首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Three experiments are reported which investigate the role of concurrent and terminal feedback in the acquisition of a discrete positioning task. Experiments I and II compare the efficiency of concurrent visual feedback (CVF) and terminal visual feedback (TVF) as training methods when the gain of the visual display is varied from 1:1 to 4:1. There is a consistent interaction between feedback method and gain of the display over the recall trials. Concurrent visual feedback is inferior to terminal visual feedback at a gain of 4:1 in Experiment I and when the displayed and actual movement directions differ (Experiment II). Experiment III explores the relationship between concurrent and terminal feedback when feedback is of a digital form and its precision is varied. Concurrent feedback is worse as a training method although there is no interaction between feedback method and precision of feedback. These findings are discussed in the light of a variety of factors which could contribute to the inferiority of concurrent feedback as a training method.  相似文献   

2.
The role of visual feedback during movement is attributed to its accuracy, but findings regarding the utilization of this information are inconsistent. We developed a novel dot-placing task to investigate the role of vision in arm movements. Participants conducted pointing-like movements between two target stimuli at even spaces. In Experiment 1, visual feedback of targets and response positions was manipulated. Although visual loss of target stimuli hindered accuracy of movements, the absence of the position of previously placed dots had little effect. In Experiment 2, the effect of movement time on accuracy was assessed, as the relationship between these has been traditionally understood as a speed/accuracy trade-off. Results revealed that duration of movement did not impact movement accuracy.  相似文献   

3.
The static or dynamic visual cues required for equilibrium as well as for foot guidance in visually guided locomotion in man were studied using a variety of locomotion supports and illumination and visual conditions. Stroboscopic illumination (brief flashes) and intermittent lighting (longer flashes) were used to control and to vary the visual sampling frequency of static (positional/orientational) visual cues. There were three main findings: First, visual control of foot positioning during locomotion over discontinuous terrain depends mainly upon static visual cues with a low sampling frequency (about 3 Hz); second, visual control of dynamic equilibrium during locomotion over a narrow support depends mainly upon the availability of high frequency static visual cues (up to about 12 Hz); and third, static visual cues required for equilibrium control are extracted from both the peripheral and the central visual field.

Assuming that discrete demands for feedback occur, a simple probabilistic model was proposed, according to which the mean time that elapses following presentation of static visual cues about positions or changes of position accounts for the differences in the difficulty of the various illumination conditions.  相似文献   

4.
The question addressed in the present experiment was whether an individual who practices a task under different conditions of afferent information develops different movement representations, each of which is based on the most accurate source of afferent information for movement control. In Experiment 1, participants (N = 23) performed a manual aiming movement in a target-only condition for 520 trials before performing in a normal vision condition for an equivalent amount of practice. Control groups performed all practice trials in either a normal vision or a target-only condition. The results revealed that the movement representation developed in the initial (target-only) practice phase remained accessible for movement planning and control. The results of Experiment 2 indicated, however, that participants did not maintain such a representation when their initial practice in the target-only condition was reduced (40 or 160 trials) before they had extensive practice in normal vision. Those results indicate that extensive practice in a target-only and then in a normal vision condition enables an individual to plan and control his or her movement on the basis of the most efficient source of available afferent information. Because visual afferent information provides optimal information for ensuring movement accuracy, however, if initial practice in the target-only condition is only modest or moderate it is likely that that information source will progressively dominate all other sources of afferent information for movement planning and control.  相似文献   

5.
The authors investigated whether the salience of dynamic visual information in a video-aiming task mediates the specificity of practice. Thirty participants practiced video-aiming movements in a full-vision, a weak-vision, or a target-only condition before being transferred to the target-only condition without knowledge of results. The full- and weak-vision conditions resulted in less endpoint bias and variability in acquisition than did the target-only condition. Going from acquisition to transfer resulted in a large increase in endpoint variability for the full-vision group but not for the weak-vision or target-only groups. Kinematic analysis revealed that weak dynamic visual cues do not mask the processing of other sources of afferent information; unlike strong visual cues, weak visual cues help individuals calibrate less salient sources of afferent information, such as proprioception.  相似文献   

6.
Motion parallax as an independent cue for depth perception.   总被引:8,自引:0,他引:8  
B Rogers  M Graham 《Perception》1979,8(2):125-134
The perspective transformations of the retinal image, produced by either the movement of an observer or the movement of objects in the visual world, were found to produce a reliable, consistent, and unambiguous impression of relative depth in the absence of all other cues to depth and distance. The stimulus displays consisted of computer-generated random-dot patterns that could be transformed by each movement of the observer or the display oscilloscope to simulate the relative movement information produced by a three-dimensional surface. Using a stereoscopic matching task, the second experiment showed that the perceived depth from parallax transformations is in close agreement with the degree of relative image displacement, as well as producing a compelling impression of three-dimensionality not unlike that found with random-dot stereograms.  相似文献   

7.
J I Laszlo  P Broderick 《Perception》1985,14(3):285-291
Earlier studies have shown the size of kinaesthetically presented two-dimensional movement patterns to be significantly overestimated. Whether this size overestimation is characteristic of the kinaesthetic system alone has not been established. Two experiments are reported which were designed to investigate size judgment made after kinaesthetic and visual pattern presentation and the effect of environmental cues on the perception of movement patterns. In experiment 1 patterns were presented kinaesthetically (experimenter guided hand movements around the outline of the pattern) or in combination with visual information given by a moving light (pinpoint light attached to the stylus which was moved around the pattern); visual and kinaesthetic cues were either congruent or conflicting with each other; and environmental cues were either present or absent. In experiment 2 static visual display was compared with visually traced pattern presentation, again with or without environmental cues. Overall the results showed that, regardless of experimental manipulation, in all cases where the information was given over time the subject perceived the pattern larger than reality. After static visual display, overestimation of size did not occur.  相似文献   

8.
Two experiments presented motion disparity conflicting with binocular disparity to examine how these cues determined apparent depth order (convex, concave) and depth magnitude. In each experiment, 8 subjects estimated the depth order and depth magnitude. The first experiment showed the following. (1) The visual system used one of these cues exclusively in selecting a depth order for each display. (2) The visual system integrated the depth magnitude information from these cues by a weighted additive fashion if it selected the binocular disparity in depth order perception and if the depth magnitude specified by motion disparity was small relative to that specified by binocular disparity. (3) The visual system ignored the depth magnitude information of binocular disparity if it selected the motion disparity in depth order perception. The second experiment showed that these three points were consistent whether the subject’s head movement or object movement generated motion disparity.  相似文献   

9.
虚拟现实技术通过提供视觉、听觉和触觉等信息为用户创造身临其境的感知体验, 其中触觉反馈面临诸多技术瓶颈使得虚拟现实中的自然交互受限。基于多感官错觉的伪触觉技术可以借助其他通道的信息强化和丰富触觉感受, 是目前虚拟现实环境中优化触觉体验的有效途径。本文聚焦于触觉中最重要的维度之一——粗糙度, 试图为解决虚拟现实中触觉反馈的受限问题提供新思路。探讨了粗糙度感知中, 视、听、触多感觉通道整合的关系, 分析了视觉线索(表面纹理密度、表面光影、控制显示比)和听觉线索(音调/频率、响度)如何影响触觉粗糙度感知, 总结了当下调控这些因素来改变粗糙度感知的方法。最后, 探讨了使用伪触觉反馈技术时, 虚拟现实环境中视、听、触觉信息在呈现效果、感知整合等方面与真实世界相比可能存在的差异, 提出可借鉴的改善触觉体验的适用方法和未来待研究的方向。  相似文献   

10.
Two groups (n = 10 in each) practiced a novel, bimanual coordination pattern that was demonstrated on video. One of the groups received augmented video feedback of their own responses after each trial following a demonstration. The video-feedback group showed better performance in acquisition and retention than the no-feedback group. On error-detection tests, the video-feedback group was better able to distinguish between correct and incorrect movement patterns. The authors concluded that video feedback helps to make relative phase information salient by aiding the discrimination process. Prepractice ability on a scanning task revealed that individuals who persevered with inphase-type movements, even though the task demands dictated otherwise, had the most difficulty determining and subsequently performing the required movement. Video feedback helped them to compensate for those difficulties.  相似文献   

11.
Four experiments were conducted to investigate the ability of a response recognition mechanism, developed by presenting the sensory consequences associated with the criterion movement in the absence of actual movement recall, to produce motor learning in the absence of knowledge of results (KR). In Experiments 1 and 2, a rapid linear timing task was used (10.16 cm in 100 msec), and reduction of movement error resulted over no-KR practice trials. Experiments 3 and 4 employed a slow movement-time task (750 and 1250 msec) and a linear positioning task, respectively, and no reduction of movement error occurred over the no-KR practice trials in either experiment. The ability of the response recognition mechanism to produce motor learning in the absence of KR depended upon the extent to which feedback could be used during response production.  相似文献   

12.
The control of a cursor on a computer monitor offers a simple means of exploring the limits of the plasticity of human visuomotor coordination. The authors explored the boundary conditions for adaptation to nonlinear visuomotor amplitude transformations. The authors hypothesized that only with terminal visual feedback during practice, but not with continuous visual feedback, humans might develop an internal model of the nonlinear visuomotor amplitude transformation. Thus, 2 groups were engaged in a sensorimotor adaptation task receiving either continuous or terminal visual feedback during the practice phase. In contrast to expectations, adaptive shifts and aftereffects observed in visual open-loop tests were linearly related to target amplitudes for both groups. Although the 2 feedback groups did not differ with respect to adaptive shifts and aftereffects, terminal visual feedback resulted in stable visual open-loop performance for an extended period, whereas movement errors increased after continuous visual feedback during practice. The benefit of continuous visual feedback, on the other hand, was faster closed-loop performance, indicating an optimization of visual closed-loop control.  相似文献   

13.
Previous research has shown semantic influence from irrelevant peripheral cues on the spatial allocation of covert visual attention. The present study explored whether the task set determines the extent of such semantic influence. A spatial cueing paradigm with strict eye movement control was used, where cues were either first names (male or female) or emotionally charged words (positive or negative) followed by a face target. Participants discriminated either the gender (male or female) or the emotion (positive or negative) of the face. When there was high information overlap between cue and task set, responses were faster when the cue and target value were semantically congruent than when they were incongruent. It was concluded that the semantically related cues primed a task-influencing response independently of spatial attention allocation processes, showing that semantic influences from brief peripheral cues depend on the degree of information overlap between cue and task set.  相似文献   

14.
In the present study, we characterize how the ability to decouple guiding visual information from a motor action emerges during childhood and adolescence. Sixty-two participants (age range 8–15 yrs.) completed two eye-hand coordination tasks. In a direct interaction task, vision and motor action were in alignment, and participants slid their finger along a vertical touch screen to move a cursor from a central target to one of four peripheral targets. In an eye-hand-decoupled task, eye and hand movements were made in different planes and cursor feedback was 180° reversed. We analyzed whether movement planning, timing and trajectory variables differed across age in both task conditions. There were no significant relationships between age and any movement planning, timing, or execution variables in the direct interaction task. In contrast, in the eye-hand-decoupled task, we found a relationship between age and several movement planning and timing variables. In adolescents (13–15 yrs.), movement planning and timing was significantly shorter than that of young children (8–10 yrs.). Eye-hand-decoupled maturation emerged mainly during late childhood (11–12 yrs.). Notably, we detected performance differences between young children and adolescents exclusively during the eye-hand decoupling task which required the integration of rule-based cognitive information into the motor action. Differences were not observed during the direct interaction task. Our results quantify an important milestone for eye-hand-decoupling development in late childhood, leading to improved rule-based motor performance in early adolescence. This eye-hand-decoupling development may be due to frontal lobe development linked to rule-based behavior and the strengthening of fronto-parietal networks.  相似文献   

15.
Previous experiments have shown that overshoot rate in a linear positioning task is determined by the distance of the target from the boundary of the task in the direction of movement. Present experiments have served to specify distance more precisely as being relative rather than absolute, and as proximal rather than distal, and to show that the position of the boundary depends on the movements demanded by the task and not the visual and proprioceptive limits of the display. The operational boundary may be regarded as a cognitive construct by reference to which subjects locate targets.  相似文献   

16.
The purpose of this study was to investigate the effects of aging and the role of augmented visual information in the acquisition of a new bimanual coordination pattern, namely a 90° relative phase pattern. In a pilot study, younger and older adults received augmented visual feedback in the form of a real-time orthogonal display of both limb movements after every fifth trial. Younger adults acquired this task over three days of practice and retained the task well over periods of one week and one month of no practice while the older adults showed no improvement at all on the task. It was hypothesized that the amount of augmented information was not sufficient for the older adults to overcome the strong tendency to perform natural, intrinsically stable coordination patterns, which consequently prevented them from learning the task. The present study evaluated the age-related role of augmented visual feedback for learning the new pattern. Participants were randomly assigned within age groups to receive either concurrent or terminal visual feedback after every trial in acquisition. In contrast to the pilot study, all of the older adults learned the pattern, although not to the same level as the younger adults. Both younger and older adults benefitted from concurrent visual feedback, but the older adults gained more from the concurrent feedback than the younger adults, relative to terminal feedback conditions. The results suggest that when learning bimanual coordination patterns, older adults are more sensitive to the structure of the practice conditions, particularly the availability of concurrent visual information. This greater sensitivity to the learning environment may reflect a diminished capacity for inhibitory control and a decreased ability to focus attention on the salient aspects of learning the task.  相似文献   

17.
The efficacy of cognitive feedback and the relative ineffectiveness of outcome feedback has been well documented in the judgment literature (Balzer, Doherty, & O′Connor, 1989). The relevant research leading to this conclusion, however, has been characterized by artificially constructed tasks with rigidly controlled stimulus properties which may not be representative of many real-world ecologies. The present study examined the effects of one form of cognitive feedback, task information, and outcome feedback in such an in vivo setting, that is, on a task which required subjects to make inferences about the level of rapport present in videotaped real-life social interactions. The two types of feedback were also compared on a second task involving a simplified, quantified, graphical representation of the relevant cues that had been extracted from the video display. Results from the graphically presented displays replicated earlier findings supporting the superiority of cognitive feedback. Results from the video display, however, showed exactly the opposite: outcome feedback here was superior to cognitive feedback in increasing performance accuracy.  相似文献   

18.
The presence of information in a visual display does not guarantee its use by the visual system. Studies of inversion effects in both face recognition and biological-motion perception have shown that the same information may be used by observers when it is presented in an upright display but not used when the display is inverted. In our study, we tested the inversion effect in scrambled biological-motion displays to investigate mechanisms that validate information contained in the local motion of a point-light walker. Using novel biological-motion stimuli that contained no configural cues to the direction in which a walker was facing, we found that manipulating the relative vertical location of the walker's feet significantly affected observers' performance on a direction-discrimination task. Our data demonstrate that, by themselves, local cues can almost unambiguously indicate the facing direction of the agent in biological-motion stimuli. Additionally, we document a noteworthy interaction between local and global information and offer a new explanation for the effect of local inversion in biological-motion perception.  相似文献   

19.
Bimanual coordination is governed by constraints that permit congruent movements to be performed more easily than incongruent movements. Theories concerning the origin of these constraints range from low level motor-muscle explanations to high level perceptual–cognitive ones. To elucidate the processes underlying coordinative constraints, we asked subjects to use a pair of left–right joysticks to acquire corresponding pairs of congruent and incongruent targets presented on a video monitor under task conditions designed to systematically modulate the impact of several perceptual–cognitive processes commonly required for bimanual task performance. These processes included decoding symbolic cues, detecting goal targets, conceptualizing movements in terms of goal target configuration, planning movement trajectories, producing saccades and perceiving visual feedback. Results demonstrate that constraints arise from target detection and trajectory planning processes that can occur prior to movement initiation as well as from inherent muscle properties that emerge during movement execution, and that the manifestation of these constraints can be significantly altered by the ability to visually monitor movement progress.  相似文献   

20.
This project investigated the ways in which visual cues and bodily cues from self-motion are combined in spatial navigation. Participants completed a homing task in an immersive virtual environment. In Experiments 1A and 1B, the reliability of visual cues and self-motion cues was manipulated independently and within-participants. Results showed that participants weighted visual cues and self-motion cues based on their relative reliability and integrated these two cue types optimally or near-optimally according to Bayesian principles under most conditions. In Experiment 2, the stability of visual cues was manipulated across trials. Results indicated that cue instability affected cue weights indirectly by influencing cue reliability. Experiment 3 was designed to mislead participants about cue reliability by providing distorted feedback on the accuracy of their performance. Participants received feedback that their performance with visual cues was better and that their performance with self-motion cues was worse than it actually was or received the inverse feedback. Positive feedback on the accuracy of performance with a given cue improved the relative precision of performance with that cue. Bayesian principles still held for the most part. Experiment 4 examined the relations among the variability of performance, rated confidence in performance, cue weights, and spatial abilities. Participants took part in the homing task over two days and rated confidence in their performance after every trial. Cue relative confidence and cue relative reliability had unique contributions to observed cue weights. The variability of performance was less stable than rated confidence over time. Participants with higher mental rotation scores performed relatively better with self-motion cues than visual cues. Across all four experiments, consistent correlations were found between observed weights assigned to cues and relative reliability of cues, demonstrating that the cue-weighting process followed Bayesian principles. Results also pointed to the important role of subjective evaluation of performance in the cue-weighting process and led to a new conceptualization of cue reliability in human spatial navigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号