首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jeannerod (1981) proposed that prehensile movements involve two independent visuomotor channels that are responsible for hand transport and hand aperture. In many studies, the movement of a marker placed on the wrist has been used as an index of hand transport because wrist movement is unaffected by the movements of the digits responsible for hand aperture. In the present study, the spatial paths of the wrist, index finger, and thumb of 5 adults, each performing 50 reaching movements, were measured with a WATSMART movement tracking system, and their variability was analyzed. The measures of movement variability suggest that the motor system is more concerned with thumb position than with wrist position during hand transport. Although the wrist is a technically convenient index of hand transport, the thumb may be a more appropriate index from the point of view of motor control  相似文献   

2.
Movement patterns may be complex in the sense of being composed of separable component tasks. These components may be coordinated at some level by the voluntary motor system, in order to combine tasks into appropriate actions. This study describes the use of task interference methods and phase transition curves (PTCs) to quantify task interference in tasks that may have two components. Comparison of the effects of task interference on the different components suggests how these may be coordinated during normal movements. These techniques can be applied to the coordination of hand transport and grasp aperture components in the reaching and grasping movements that people make in order to pick things up. Five subjects made cyclical movements that involved either composite reaching or just the transport or grasp component in isolation, according to condition. The cyclical movements were "perturbed" by requiring a rapid transport or grasping response to an auditory signal by the contralateral hand. The pattern of phase shifts, or changes in the timing of the cyclical task introduced by these perturbations was modeled using phase transition curves, in order to assess the nature of the functional linkage between transport and aperture in normal prehensile movement. The results suggest a functional linkage between grasp aperture and hand transport in normal prehensile movement.  相似文献   

3.
Participants (N = 13) made reach-to-grasp movements to an elongated object with or without a forearm pronation movement. Grasp and transport components of movements performed without forearm pronation differed from those performed when participants preplanned forearm pronation. The transport distance traveled after peak aperture (aperture closure distance) was unchanged, however, suggesting that participants initiated aperture closure on the basis of the distance of the hand from the target. When they suddenly pronated the forearm in response to a perturbation, aperture kinematics were altered from a monophasic to a biphasic profile and aperture closure distance was shortened. Conversely, a sudden reorientation to a nonpronated position minimized those changes. Thus, the relationship between transport and aperture components is differentially altered depending on online reorientation of the forearm.  相似文献   

4.
Transport of the hand towards an object and the formation of grasp are logically separable components of reaching. It has been suggested that, although the two components must be temporally co-ordinated, their spatial parameters are under the control of independent visuo-motor channels. A case study of reaching by a proficient user of a manually-operated artificial hand is presented. A pattern of natural hand usage was observed in which the index finger rather than the thumb was responsible for reduction of grasp aperture as the hand approached an object. The same pattern of usage was also observed in the artificial hand even though the mechanics of that hand make it no easier to move the finger than the thumb. This suggests that the relative stability of the thumb in the natural hand is determined, not simply by anatomy, but by a role in guiding the transport component of reaching. At least part of the spatial aspect of grasp formation is closely related to the transport component of reaching and this is evidence against theories postulating two independent visuo-motor channels controlling the spatial parameters of grasp and transport.  相似文献   

5.
In a number of studies, we have demonstrated that the spatial-temporal coupling of eye and hand movements is optimal for the pickup of visual information about the position of the hand and the target late in the hand's trajectory. Several experiments designed to examine temporal coupling have shown that the eyes arrive at the target area concurrently with the hand achieving peak acceleration. Between the time the hand reached peak velocity and the end of the movement, increased variability in the position of the shoulder and the elbow was accompanied by a decreased spatial variability in the hand. Presumably, this reduction in variability was due to the use of retinal and extra-retinal information about the relative positions of the eye, hand and target. However, the hand does not appear to be a slave to the eye. For example, we have been able to decouple eye movements and hand movements using Müller-Lyer configurations as targets. Predictable bias, found in primary and corrective saccadic eye movements, was not found for hand movements, if on-line visual information about the target was available during aiming. That is, the hand remained accurate even when the eye had a tendency to undershoot or overshoot the target position. However, biases of the hand were evident, at least in the initial portion of an aiming movement, when vision of the target was removed and vision of the hand remained. These findings accent the versatility of human motor control and have implications for current models of visual processing and limb control.  相似文献   

6.
7.
An experiment was designed to determine the degree to which reciprocal aiming movements of the wrist and arm with various accuracy requirements (Fitts' tasks) are enhanced by extended practice. The vast majority of research on motor learning shows performance improvement over practice. However, literature examining the effect of practice on Fitts' task performance is limited and inconclusive. Participants were asked to flex/extend their limb/lever in the horizontal plane at the wrist (arm stabilized) or elbow joint (wrist stabilized) in an attempt to move back and forth between two targets as quickly and accurately as possible. The targets and current position of the limb were projected on the screen in front of the participant. Target width was manipulated with amplitude constant (16°) in order to create indexes of difficulty (ID) of 1.5, 3, 4.5, and 6. Contrary to the earlier reports, after 20 days of practice, we found minimal changes in movement time or the movement time-ID relationships for the arm and wrist over practice. However, the variability in the movement endpoints decreased over practice and wrist movements at ID=6 were characterized by shorter movement times and longer dwell times relative to arm movements with dwell time for the wrist increasing over practice. These data are consistent with the notion that Fitts' tasks provide a stable measure of perceptual-motor capabilities.  相似文献   

8.
In human movement, synergies occur when two or more variables co-vary to stabilize a performance goal. The concept of motor redundancy is associated with the existence of several strategies to complete the same task, which enables a movement system to adapt to an ever-changing environment. This feature provides the system with the ability of being flexible enough to produce adaptive movements, but also stable enough to produce acceptable outputs which is a key issue in motor performance. In a kinetic chain of movement, two proximal joints might reciprocally compensate to stabilize an end-effector (i.e., the most distal segment in the limb that interacts with the environment). End-effector variables are ‘controlled’, and directly linked to performance, whereas the task relevant elements are allowed by the system to have high variability, providing adaptability. In basketball dribbling, we hypothesized that shoulder and elbow variability contributes to stabilize the dribble height as an end-effector performance variable. A specific computational procedure based on the UCM (i.e., Uncontrolled Manifold) notion was used to capture synergies in two groups according to the experience level: amateurs and professionals. Results identified synergy presence during the basketball dribbling, which only occurred when the wrist reached its peak height. The control of the wrist peak height is achieved due to a reciprocal compensation between shoulder and elbow which stabilizes the dribbling height.  相似文献   

9.
In reaching for an object in the environment, it has been suggested that movement components concerned with transport of the hand toward the object and those related to grasping the object are organized and executed independently. An experiment is reported that demonstrates people adjust grasp aperture to compensate for factors affecting transport error. Grasp aperture was found to be greater in reaching movements performed faster than normal, and grasp aperture was also found to be wider when reaching with the eyes closed. In both cases, transport was spatially less accurate. It is argued that, in advance of movement, formation of grasp is planned to take into account not only the perceived characteristics of the object but, also, internalized information based on past experience about the likely accuracy of the transport component.  相似文献   

10.
The purpose of this study was to investigate whether premovement facilitation of corticospinal excitability before sequential movement was different from that before simple movement. Each of 7 participants who performed choice reaction tasks with the right hand pressed a force transducer with the index finger in response to a start cue or pressed the transducers sequentially with the index finger, little finger, thumb, little finger, and index finger. Transcranial magnetic stimulation was delivered to the left motor cortex before the electromyographic burst in the first dorsal interosseous muscle and motor evoked potentials were recorded from the first dorsal interosseous muscle. The amplitude of the motor-evoked potential increased as its onset got closer to the onset of the electromyographic burst. The increase before the sequential movement was larger and began earlier than that before the simple movement. These findings indicate that premovement facilitation of corticospinal excitability is different in magnitude and timing between sequential and simple movements.  相似文献   

11.
Prehension movements of the right hand were recorded in a right-handed man (AC), with an injury to the left posterior parietal cortex (PPC) and with a section of the left half of the splenium. The kinematic analysis of AC's grasping movements in direct and perturbed conditions was compared to that of five control subjects. A novel effect in prehension was revealed--a hemispace effect--in healthy controls only. Movements to the left hemispace were faster, longer, and with a smaller grasp aperture; perturbation of both object position and distance resulted in the attenuation of the direction effect on movement time and the time to velocity peak, with a reverse pattern in the time to maximum grip aperture. Nevertheless, the correlation between transport velocity amplitude and grasp aperture remained stable in both perturbed and non-perturbed movements, reflecting the coordination between reaching and grasping in control subjects. In contrast, transport and grasp, as well as their coordination in both direct and perturbed conditions, were negatively affected by the PPC and splenium lesion in AC, suggesting that transport and grasp rely on two functionally identifiable subsystems.  相似文献   

12.
In the present study, the co-ordination of grasp and transport components of one-handed catching was examined following mechanical perturbations applied to the wrist. Six skilled catchers (mean age = 27.5 years) performed 64 trials in which tennis balls were projected at approximately 8 ms-1. The trial blocks consisted of 10 non-perturbed trials (NPTs) (baseline), and a block of 54 trials of which 20 trials were perturbed. The perturbation was in the form of a resistive force (12 N) applied via a piece of cord attached to a mechanical brake. In baseline trials participants reached maximal wrist velocity closer to the time of hand-ball contact (237 ms +/- 68) than in the perturbed (309 ms +/- 61) condition. Furthermore the wrist velocity profile of five out of six participants exhibited a double peak immediately after a perturbation. However, aperture variables such as the relative moment of final hand closure (approximately 70% of overall movement time) were not typically affected. The stability of grasp and transport coupling for one-handed catching was shown to vary from trial to trial. Skilled performers exploited redundant degrees of freedom in the motor system when faced with a sudden, unexpected change in task constraints.  相似文献   

13.
Typically, prehension and gait behaviors are studied separately. However, little is known about what changes occur in these motor skills when they are combined. We investigated and characterized motor performance during combined walking and prehension at different levels of difficulty of the prehension task. Fifteen right-handed young adults were invited to walk at their self-selected pace and grasp a dowel as they walked. They also grasped the dowel in a stationary condition (upright stance). We combined conditions with/without obstacles and stable/unstable base for dowel prehension. Modifications in gait and prehension were identified when they were combined, especially for the most difficult prehension conditions. The grasping task caused an adaptation in gait because the participants preferred to adopt a more conservative strategy of increasing their dynamic stability during the approach phase and when grasping the dowel. Walking changed the prehension movement by reducing the reaching movement time, peak wrist velocity, and peak grip aperture velocity. In addition, the peak grip aperture was affected by the presence of obstacles close to the dowel. The participants adjusted their gait during the approach phase to facilitate dowel prehension, and they controlled the hand position online to adjust its configuration based on the prehension conditions.  相似文献   

14.
Accurate timing of limb displacement is crucial for effective motor control. The authors examined the effects of movement velocity, duration, direction, added mass, and auditory cueing on timing, spatial, and trajectory variability of single- and multijoint rhythmic movements. During single-joint movements, increased velocity decreased timing and spatial variability, whereas increased movement duration increased timing variability but decreased spatial variability. For multijoint movements, regardless of condition, increasing velocity decreased joint timing, spatial, and trajectory variability, but all hand variabilities were unaffected by velocity, duration, load, or direction. Timing, spatial, and trajectory variability was greater at the shoulder compared with the elbow and minimal at the hand, supporting the notion that reaching movements are planned in hand space as opposed to joint space.  相似文献   

15.
Eye-hand coordination: oculomotor control in rapid aimed limb movements   总被引:7,自引:0,他引:7  
Three experiments are reported in which Ss produced rapid wrist rotations to a target while the position of their eyes was being monitored. In Experiment 1, Ss spontaneously executed a saccadic eye movement to the target around the same time as the wrist began to move. Experiment 2 revealed that wrist-rotation accuracy suffered if Ss were not allowed to move their eyes to the target, even when visual feedback about the moving wrist was unavailable. In Experiment 3, wrist rotations were equally accurate when Ss produced either a saccadic or a smooth-pursuit eye movement to the target. However, differences were observed in the initial-impulse and error-correction phases of the wrist rotations, depending on the type of eye movement involved. The results suggest that aimed limb movements use information from the oculomotor system about both the static position of the eyes and the dynamic characteristics of eye movements. Furthermore, the information that governs the initial impulse is different from that which guides final error corrections.  相似文献   

16.
The present experiment determined whether object texture influenced the transport and grasp components of human prehension. Infrared markers placed on the index finger, thumb, and wrist were recorded using a WATSMART system. The test objects were cylindrical dowels (103 mm high, 25 mm diameter, and 150 g in weight) of various surface materials (plain metal, coated with Vaseline, and covered with coarse sandpaper). Only temporal kinematic measures were affected by texture: Movement time (ms), time after peak deceleration (ms), percentages of movement time following maximum aperture, velocity, and deceleration were all significantly greater for the slippery dowel than the normal and rough dowels. Results indicated that the increased time associated with the slippery dowel could be explained entirely by increased time between contact with the dowel and dowel lift. Thus, these results are like those of Weir, MacKenzie, Marteniuk, Cargoe, and Frazer (1991), in which object weight was shown not to affect the free-motion phase, which includes the transport and grasp components of prehension. It appears that intrinsic object properties like weight and texture affect only the finger-object interaction phase of prehension; subsequent research is needed to dissociate inertial and surface friction effects while in contact with objects  相似文献   

17.
The purpose of these experiments was to determine the effects of object weight and condition of weight presentation on the kinematics of human prehension. Subjects performed reaching and grasping movements to metal dowels whose visible characteristics were similar but whose weight varied (20, 55, 150, 410 g). Movements were performed under two conditions of weight presentation, random (weight unknown) and blocked (weight known). Three-dimensional movements of the thumb, index finger, and wrist were recorded, using a WATSMART system to obtain information regarding the grasp and transport components. The results of the first experiment indicated that object weight and condition of presentation affected the temporal and kinematic measures for both the grasp and transport components. In conjunction with the results of a second experiment, in which time in contact with the dowel was measured, it was shown that the free-motion phase of prehension (i.e., up to object contact) was invariant over the different conditions, however. The changes were observed in the finger-object interaction phase (when subjects applied forces after contact with the dowel), prior to lift-off. These results were interpreted as indicating (a) object weight does not influence the planning and execution of the free-motion phase of prehension and (b) there are at least two motor control phases involved in prehension, one for making contact with the object and the other for finger-object interaction. The changing contributions of visual, kinesthetic, and haptic information during these two phases is discussed.  相似文献   

18.
The purpose of these experiments was to determine the effects of object weight and condition of weight presentation on the kinematics of human prehension. Subjects performed reaching and grasping movements to metal dowels whose visible characteristics were similar but whose weight varied (20, 55, 150, 410 g). Movements were performed under two conditions of weight presentation, random (weight unknown) and blocked (weight known). Three-dimensional movements of the thumb, index finger, and wrist were recorded, using a WATSMART system to obtain information regarding the grasp and transport components. The results of the first experiment indicated that object weight and condition of presentation affected the temporal and kinematic measures for both the grasp and transport components. In conjunction with the results of a second experiment, in which time in contact with the dowel was measured, it was shown that the free-motion phase of prehension (i.e., up to object contact) was invariant over the different conditions, however. The changes were observed in the finger-object interaction phase (when subjects applied forces after contact with the dowel), prior to lift-off. These results were interpreted as indicating (a) object weight does not influence the planning and execution of the free-motion phase of prehension and (b) there are at least two motor control phases involved in prehension, one for making contact with the object and the other for finger-object interaction. The changing contributions of visual, kinesthetic, and haptic information during these two phases is discussed.  相似文献   

19.
When a person executes a movement, the movement is more errorful while observing another person’s actions that are incongruent rather than congruent with the executed action. This effect is known as “motor contagion”. Accounts of this effect are often grounded in simulation mechanisms: increased movement error emerges because the motor codes associated with observed actions compete with motor codes of the goal action. It is also possible, however, that the increased movement error is linked to eye movements that are executed simultaneously with the hand movement because oculomotor and manual-motor systems are highly interconnected. In the present study, participants performed a motor contagion task in which they executed horizontal arm movements while observing a model making either vertical (incongruent) or horizontal (congruent) movements under three conditions: no instruction, maintain central fixation, or track the model’s hand with the eyes. A significant motor contagion-like effect was only found in the ‘track’ condition. Thus, ‘motor contagion’ in the present task may be an artifact of simultaneously executed incongruent eye movements. These data are discussed in the context of stimulation and associative learning theories, and raise eye movements as a critical methodological consideration for future work on motor contagion.  相似文献   

20.
The accuracy with which people execute wrist and elbow movements were measured using three main conditions: (i) single-jointed (wrist or elbow) movements to targets, (ii) dual-jointed (wrist and elbow) movements to targets, and (iii) components of dual-jointed movements to targets, when the task for the subject was to perform the elbow or wrist constituent of the action in isolation, without displacing the second joint. Elbow precision was significantly worse under component than dual conditions, which is compatible with the notion that wrist and elbow activity are conjugately, rather than independently, programmed when a dual-jointed action is performed. The pattern of wrist accuracy was divergent, but possible reasons for this were discussed. In all cases, error was measured in terms of deviation from perfect posture; using this index, the hypothesis that incorporating more moving joints into an action serves to increase movement complexity and jeopardise precision was tested, but the results were ambiguous. Discussion also centered on the problems of using performance data to infer changes in motor programming, and the need for rigorous conceptualisation and research in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号