首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Joint position sense is important for performing activities of daily living and recreational activities. The objective of this study was to develop new insights into the proprioceptive capabilities of the shoulder using a novel virtual reality paradigm where participants actively recreated shoulder positions in all three dimensions. This allows for better identification of changes in joint position sense across different shoulder postures. Ten males and ten female healthy adults matched a cursor controlled by shoulder rotations calculated from motion capture tracking, to a target shoulder position presented in a virtual environment with the use of a virtual reality headset. Four elevation angles, three plane of elevation angles, and three rotation angles were investigated, totaling thirty-six angles that encompassed the range of motion of the shoulder. Joint position sense was enhanced as the elevation angle was increased, and further enhanced when the arm was more externally rotated and elevated. As elevation angle increased to 90°, joint position sense significantly increased. There was also a significant interaction of external rotation on elevation angle. As elevation angle increased, participants were more accurate when the arm was externally, but exhibited greater variability. These improvements in joint position sense are likely produced by increased tension in muscles and capsuloligamentous mechanoreceptors within the shoulder. As many sports and activities of daily living require joint position sense to complete a task, the ability to elevate and externally rotate is important for adequate shoulder proprioception and control.  相似文献   

2.
Young infants produce a variety of spontaneous arm and leg movements in the first few months of life. Coordination of leg joints has been extensively investigated, whereas arm joint coordination has mainly been investigated in the sitting position in the context of early reaching and grasping. The current study investigated arm and leg joint coordination of movements produced in the supine position in 10 fullterm infants aged 6, 12 and 18 weeks. Longitudinal comparisons within limbs (intralimb) as well as between limbs (interlimb, ipsilateral and contralateral) were made as well as an exploration of differences in the development for boys and girls. The relationship between the joint angles was examined by measuring pair-wise cross-correlation functions for the angular displacement curves of the leg (hip, knee and ankle) and arm (shoulder, elbow and wrist) joints of both the right and left side. Both the arms and legs were found to follow a similar pattern of intralimb coordination, although the leg joints were more tightly coupled than the arm joints, particularly the proximal with the middle joint. In support of earlier findings, differences in the development of the right and left side were identified. In addition, gender differences in joint coordination were found for both intralimb and interlimb coordination. This contrasts with the view that gender differences in motor development may be primarily a result of environmental influences.  相似文献   

3.
Proprioception is essential for shoulder neuromuscular control and shoulder stability. Exercise of the rotator cuff and scapulothoracic muscles is an important part of shoulder rehabilitation. The purpose of this study was to investigate the effect of rotator cuff and scapulothoracic muscle exercises on shoulder joint position sense. Thirty-six healthy subjects were recruited and randomly assigned into either a control or training group. The subjects in the training group received closed-chain and open-chain exercises focusing on rotator cuff and scapulothoracic muscles for four weeks. Shoulder joint position sense errors in elevation, including the humerothoracic, glenohumeral and scapulothoracic joints, was measured. After four weeks of exercise training, strength increased overall in the training group, which demonstrated the effect of exercise on the muscular system. However, the changes in shoulder joint position sense errors in any individual joint of the subjects in the training group were not different from those of the control subjects. Therefore, exercises specifically targeting individual muscles with low intensity may not be sufficient to improve shoulder joint position sense in healthy subjects. Future work is needed to further investigate which types of exercise are more effective in improving joint position sense, and the mechanisms associated with those changes.  相似文献   

4.
The study tested a hypothesis that practice of arm pointing movement can lead to a reorganization of the joint coordination reflected in the emergence of several synergies based on the same set of joints. In particular, involvement of the wrist may represent a choice by the central nervous system and not be driven by the typical “freezing-to-freeing” sequence. The effects of practice on the kinematic patterns and variability of a “fast and accurate” pointing movement using a pointer were studied. An obstacle was placed between the initial position and the target to encourage a curvilinear trajectory and larger wrist involvement. Practice led to a decrease in variability indices accompanied by an increase in movement speed of the endpoint and of the elbow and the shoulder, but not of the wrist joint. Five out of six subjects decreased the peak-to-peak amplitude of wrist motion. Before practice, the variability along the line connecting the endpoint to the shoulder (extent) was similar to that in the direction orthogonal to this line. After practice, variability was reduced along the extent, but not along the orthogonal direction perpendicular to this line. Prior to practice, indices of variability of the endpoint were lower than those of the marker placed over the wrist; after practice, the endpoint showed higher variability indices than the wrist. We interpret the data as consequences of the emergence of two synergies: (a) Pointing with a non-redundant set of the elbow and shoulder joints; and (b) keeping wrist position constant. The former synergy is based on a structural unit involving the elbow and the shoulder, while the latter is based on a structural unit that includes all the major arm joints.  相似文献   

5.
The role of timing in the control of multijoint pointing movements was evaluated. Eight subjects performed rapid pointing movements to a variety of target locations. The subject's right arm was strapped to a 2 degrees of freedom manupilandum that permitted shoulder and elbow motion in the horizontal plane. Initial and final position of the hand and magnitude of displacement was varied to determine effects on timing characteristics. Kinematics and kinetics of the shoulder, elbow, and hand were analyzed. The hand paths and velocity profiles observed were consistent with prior reports. Multiple regression analysis of kinematic variables disclosed that timing of joint movement onset was independent of initial and final positions of the hand, but was linearly related to joint displacement: the joint that moved farther started moving first. Using computer simulations to create joint movement onset, times that were different from the observed ones always resulted in hand paths with increased curvatures and loss of the smooth velocity profiles. Secondly, a very stable, linear relationship was observed between peak velocity and displacement at both the elbow and shoulder joints. This relationship was not affected by variations in movement space. We suggest that space-time transformation based on difference in joint displacement is used to regulated timing of joint movement onset. The simulations indicate that this transformation is set to produce smooth velocity profiles. The relationships between timing of movement onset and displacement and between peak velocity and displacement complement each other: by maintaining a linear relationship between velocity and displacement, a linear space time transformation can be used to control timing. Furthermore, these relationships are probably used to simplify coordination between the moving joints.  相似文献   

6.
7.
It is unclear, whether proprioceptive dysfunction in developmental coordination disorder (DCD) is localized affecting only specific joints or whether it is generalized affecting proximal and distal joints. Thus, this study assessed position sense acuity at the elbow and wrist in twenty children with DCD (age: 9–11 yrs.) using a joint position matching paradigm. Position sense bias (systematic error) at either joint was not significantly higher in DCD children when compared to typically developing children (TD). However, DCD children exhibited significantly lower position sense precision (random error) than TD children at both elbow and wrist. That is, response reliability to proprioceptive stimuli is altered in DCD. Our findings are consistent with a view that proprioceptive dysfunction in DCD is generalized in nature.  相似文献   

8.
A dynamic, 3-dimensional model was developed to simulate slightly restricted (pronation-supination was not allowed) point-to-point movements of the upper limb under different external loads, which were modeled using 3 objects of distinct masses held in the hand. The model considered structural and biomechanical properties of the arm and measured coordinates of joint positions. The model predicted muscle torques generated by muscles and needed to produce the measured rotations in the shoulder and elbow joints. The effect of different object masses on torque profiles, magnitudes, and directions were studied. Correlation analysis has shown that torque profiles in the shoulder and elbow joints are load invariant. The shape of the torque magnitude-time curve is load invariant but it is scaled with the mass of the load. Objects with larger masses are associated with a lower deflection of the elbow torque with respect to the sagittal plane. Torque direction–time curve is load invariant scaled with the mass of the load. The authors propose that the load invariance of the torque magnitude–time curve and torque direction–time curve holds for object transporting arm movements not restricted to a plane.  相似文献   

9.
Our recent work on the initial emergence of reaching identified a mosaic of developmental changes and consistencies within the hand and joint kinematics of arm movements across the pre-reaching period. The purpose of this study was to test hypotheses regarding the coordination of hand and joint kinematics over this same pre-reaching period. Principal component analysis (PCA) was conducted on hand, shoulder, and elbow kinematic data from 15 full-term infants observed biweekly from 8 weeks of age through the week of reach onset. Separate PCAs were calculated for spatial variables and for velocity variables in trials with a toy and without a toy. From the PCA results, we constructed ‘variance profiles’ to reflect the coordinative structure of the hand, shoulder, and elbow. By coordinative structure is meant here the relative contribution of each joint to the factors revealed by the PCA. Shifts in these profiles, which reflected coordination changes, were compared across the hand and joints within each pre-reaching phase (Early, Mid, Late) as well as across phases and trial conditions (no-toy and toy). Results identified both surprising consistencies and important developmental changes in coordination. First, over development, spatial coordination changed in different ways for the shoulder and elbow. Between the Early and Late phases, spatial coordination at the shoulder showed more adult-like coordination during both spontaneous movements and movements with a toy present. In contrast, elbow spatial coordination became more adult-like only during movements with a toy and less adult-like during spontaneous movements. Second, over development, velocity coordination became more adult-like at both joints in movements with and without a toy present. We propose that the features of coordination that changed over development suggest explanations for the differential roles and developmental trajectories of the control of arm movements between the shoulder and elbow. We propose that features that remained consistent over development suggest the presence of developmentally important constraints inherent in arm biomechanics, which may simplify arm control for reaching. Taken together, these findings highlight the critical role of spontaneous arm movements in the emergence of purposeful reaching.  相似文献   

10.
Control of arm movements when the number of joints exceeds the degrees of freedom necessary for the task requires a strategy for selecting specific arm configurations out of an infinite number of possibilities. This report reviews strategies used by human subjects to control the shoulder, elbow, and wrist (three degrees of freedom) while moving a pointer to positions in a horizontal plane (two degrees of freedom). Analysis of final arm configurations assumed when the pointer was at the target showed the following: (a) Final arm configurations were virtually independent of the configuration at the start of the pointing movement, (b) subjects avoided configurations subjectively felt to be uncomfortable (e.g., those with extreme flexion or extension of the wrist), and (c) the results could be simulated by assigning hypothetical cost functions to each joint and selecting the arm configuration that minimized the sum of the costs. The fitted cost functions qualitatively agreed with psychophysically determined comfort; they appeared to depend on joint angle and on muscular effort. Simple neural networks can learn implicit representations of these cost functions and use them to specify final arm configurations. The minimum cost principle can be extended to movements that use the fingers as a fourth movable segment. For this condition, however, experiments showed that final configurations of the arm depended upon initial configurations. Analysis of movement trajectories for arms with three degrees of freedom led to a control model in which the minimum cost principle is augmented by a mechanism that distributes required joint movements economically among the three joints and a mechanism that implements a degree of mass-spring control.  相似文献   

11.
The effect of concurrent physical and cognitive demands on arm motor control is poorly understood. This exploratory study compared movement kinematics in a repetitive high-precision pipetting task with and without additional concurrent cognitive demands in the form of instructions necessary to locate the correct target tube. Thirty-five healthy female subjects performed a standardized pipetting task, transferring liquid repeatedly from one pick-up tube to different target tubes. In the reference condition, lights indicated the target tube in each movement cycle, while the target tube had to be deciphered from a row and column number on a computer screen in the condition with additional cognitive demands. Kinematics of the dominant arm was assessed using the central tendency and variability of the pipette-tip end-point trajectory and joint kinematics properties of the shoulder and elbow. Movements slowed down (lower velocities and higher area under the movement curves) and trajectory variability increased in the condition with additional cognitive demands, but there were no changes in the kinematics properties such as joint range of motion, times of acceleration and deceleration (as indicated by the time to peak velocity), average angles, or phase relationships between angle and angular velocity of shoulder or elbow movements between the two conditions. Further, there were also no differences in the size or structure of variability of the shoulder and elbow joint angles, suggesting that subjects could maintain the motor repertoire unaltered in the presence of these specific additional cognitive demands. Further studies should address motor control at other levels of concurrent cognitive demands, and with motor tasks that are less automated than the pipetting task used in the present study, so as to gain an increased understanding of the effect of concurrent cognitive demands for other activities of relevance to daily life.  相似文献   

12.
The present study addressed the effect of articular conformity of the shoulder joint on the stability of inter-joint coordination during circular drawing movements. Twelve right-handed participants performed clockwise and counter-clockwise circular drawing movements at nine locations in the mid-sagittal plane. The task was paced acoustically at 1.0, 1.5 and 2.0 Hz and performed without visual control. Displacements of seven infrared light emitting diodes that were fixated at relevant joints were sampled at 100 Hz by means of a 3D-motion tracking system (Optotrak 3020). From these data, shoulder, elbow and wrist angular excursions were derived as well as the continuous relative phase of the proximal and distal joint pairs of the arm. The results confirmed earlier observations that the shoulder and elbow are more strongly coupled than the elbow and wrist in sagittal-plane movements. However, a typical characteristic of the architecture of the shoulder joint, that is, its built-in mechanical "joint play", was shown to induce a position-dependent variation in inter-joint coordination stability. We conclude that besides polyarticular-muscle induced synergies and inertial coupling, articular conformity of the shoulder joint constitutes an additional determinant of inter-joint coordination stability that, to date, has been neglected.  相似文献   

13.
Repetitive movements are considered a risk factor for developing practice-related musculoskeletal disorders. Intra-participant kinematic variability might help musicians reduce the risk of injury during repetitive tasks. No research has studied the effects of proximal motion (i.e., trunk and shoulder movement) on upper-limb movement variability in pianists. The first objective was to determine the effect of proximal movement strategies and performance tempo on both intra-participant joint angle variability of upper-limb joints and endpoint variability. The second objective was to compare joint angle variability between pianist's upper-limb joints. As secondary objectives, we assessed the relationship between intra-participant joint angle variability and task range of motion (ROM) and documented inter-participant joint angle variability. The upper body kinematics of 9 expert pianists were recorded using an optoelectronic system. Participants continuously performed two right-hand chords (lateral leap motions) while changing movements based on trunk motion (with and without) and shoulder motion (counter-clockwise, back-and-forth, and clockwise) at two tempi (slow and fast). Trunk and shoulder movement strategies collectively influenced variability at the shoulder, elbow and, to a lesser extent, the wrist. Slow tempi led to greater variability at wrist and elbow flexion/extension compared to fast tempi. Endpoint variability was influenced only along the anteroposterior axis. When the trunk was static, the shoulder had the lowest joint angle variability. When trunk motion was used, elbow and shoulder variability increased, and became comparable to wrist variability. ROM was correlated with intra-participant joint angle variability, suggesting that increased task ROM might result in increased movement variability during practice. Inter-participant variability was approximately six times greater than intra-participant variability. Pianists should consider incorporating trunk motion and a variety of shoulder movements as performance strategies while performing leap motions at the piano, as they might reduce exposure to risks of injury.  相似文献   

14.
The position sense of a stationary arm was investigated subsequent to an horizontally adductive movement with axis the shoulder joint. The right arm was the treated arm: it reached a test position actively, using minimal voluntary effort, or passively from each of 10 starting positons. The blind-folded S localized the index finger of the treated arm by attempting to touch it with the index finger of his left hand. The results indicate that subsequent to active movement the final position of a limb is more accurately known than a position resulting from passive movement. A second finding is that concomitant with both forms of limb placement there is a unidirectional drift of perceived limb position over trials.  相似文献   

15.
The influence of starting positions of the arm on EMG-RTs of the biceps brachii muscle for elbow flexion and forearm supination was examined using 16 normal subjects. Two angles of the elbow joint, 45 degrees and 110 degrees flexion, and two positions of the forearm, 45 degrees supination and 90 degrees pronation, were used as the factorial combinations of all four. The EMG-RT for elbow flexion decreased in the order of 110 degrees Pronation greater than 45 degrees Pronation = 110 degrees Supination greater than 45 degrees Supination, and that for forearm supination decreased in the order of 45 degrees Supination greater than 45 degrees Pronation = 110 degrees Supination greater than 110 degrees Pronation. These results were kinesiologically interpreted that variations of EMG-RTs were based on the change in the number of synergic muscles participating in an intended movement and the muscle length of the prime mover at the start of the movement.  相似文献   

16.
Shoulder joint position sense (JPS) is important for maintaining stability and contributing to coordinated movements. It is provided by afferent and centrally-derived signals interpreted and integrated by the central nervous system (CNS) for subsequent use. Shoulder JPS is enhanced as the joint approaches end range of motion (ROM) in studies involving internal and external rotation with the arm supported, but this finding has not been confirmed in unconstrained movements. To address this issue, the present study examined the effect of shoulder position in the horizontal plane on JPS at a constant elevation. Twenty-three healthy individuals were recruited from a university campus. Subjects attempted to actively replicate various target positions in both plane and elevation. Target positions consisted of five positions in the horizontal plane, normalized to individual horizontal abduction ROM, at 90° of arm elevation. All target positions were tested three times, and average absolute and variable errors were analyzed for each position. No differences in either absolute (p = .312) or variable (p = .185) errors were observed between positions. These results further support the contention that the muscle spindles are a dominant source of afferent feedback regarding shoulder JPS in unconstrained movements, even approaching end ROM, when the capsuloligamentous receptors are active.  相似文献   

17.
The purpose of this study was to determine whether videotaped demonstrations of an action which displayed only the motion pattern of a model's limb as compared with one which showed both form and motion provide sufficient information for modelling a given pattern of movement. Video-demonstrations of an arm-movement sequence which ended with a throwing action were shown to adult subjects whose task was to model precisely what they saw. Each demonstration lasted 6 sec. and was shown 6 times. It portrayed the arm of a model, who held a small ball, performing a sequence of movements (flexion and extension of the elbow) which ended in the ball being thrown about 2.5 m with a 'darts-style' action. Three types of demonstration were presented: one showed the whole arm in dark clothing against a light-coloured background, another showed the arm as the relative motion of patches of light situated at the shoulder, elbow, and wrist joints, and the third showed the arm as the relative motion of the upper and lower segments of the arm represented by strips of light-reflectant material. These were the stimuli for the between-groups experimental conditions. Goniometry techniques were used to compare the performance of subjects relative to the model. Analysis showed that the order of the preparatory sequence was correctly produced after 4 trials under all conditions. Range of arm movement in projecting the ball closely approximated that of the model after 4 trials in all conditions. The time taken for the arm to project the ball remained constant across trials under all conditions and was always slower than the demonstrated cadence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To examine the coordination of muscles during multijoint movement, we compared the response of wrist muscles to perturbations about the elbow joint with their activation during a volitional elbow movement. The purpose was to test the following two predictions: (a) Responses can occur in muscles not stretched by the perturbation, as has been reported for other multijoint systems; and (b) the motor pattern in response to a perturbation mimics an opposing volitional motor pattern across the two joints. We recorded the electromyographic (EMG) activity of elbow and wrist muscles as well as the flexion/extension motions at the elbow and wrist joints during individual trials that either involved a response to a torque perturbation that extended the elbow or required volitional elbow flexion. The results of this study confirmed that responses were elicited in the nonstretched wrist muscles when the elbow joint was perturbed. The same motor sequence of elbow and wrist flexors was present for both the volitional and perturbation task (with the forearm supinated), regardless of whether the wrist joint was immobilized or freely moving. The findings suggest that the nervous system relies on the purposeful coupling of elbow and wrist flexors to counter the inertial effects during the unrestricted voluntary movement, even though the coupling does not appear to be purposeful during the perturbation or with the wrist immobilized. The coupling of elbow and wrist flexors, however, was not rigidly fixed, as evidenced by muscle onsets that adapted over repeated perturbation trials and a reversal of the wrist muscle activated (wrist extensor) when the forearm was pronated. Hence, the coupling of muscle activities can be modified quantitatively when not beneficial and can be altered qualitatively with different initial configurations of the arm.  相似文献   

19.
Energy optimization in goal-directed aiming has been demonstrated as an undershoot bias in primary movement endpoint locations, especially in conditions where corrections to target overshoots must be made against gravity. Two-component models of upper limb movement have not yet considered how joint angles are organized to deal with the energy constraints associated with moving the upper limb in goal-directed aiming tasks. To address this limitation, participants performed aiming movements to targets in the up and down directions with the index finger and two types of rod extensions attached to the index finger. The rod extensions were expected to invoke different energy optimizing strategies in the up and down directions by allowing the distal joints the opportunity to contribute to end effector displacement. Primary movements undershot the farthest target to a greater extent in the downward direction compared to the upward direction, showing that movement kinematics optimize energy expenditure in consideration of the effects of gravity. As rod length increased, shoulder elevation was optimized in movements to the far-up target and elbow flexion was optimally minimized in movements to the far-down target. The results suggest energy optimization in the control of joint angles independent of the force of gravity.  相似文献   

20.
The influence of preparatory stance on rotation movement reaction time of the trunk by bending of the knee and hip joint(s) was examined in 12 subjects. Four preparatory stances were examined: straight knee and hip extension (STAND), slight flexion of knee joints and hip joint (LIGHT), deep flexion (DEEP), and free initial position, i.e. that felt to be the most comfortable and effective (FREE). There was no significant influence of the preparatory stance on hip latency, but there were significant differences between the preparatory stances on response time (RT) and movement time (MT). Furthermore, using a quadratic curve fitting technique, knee joint angles of 24.8 degrees and a hip joint angle of 23.3 degrees were shown to be the optimum flexion angles in the preparatory stance for the initiation of quick trunk rotation movements. It is proposed that mechanical factors have considerably more effects on trunk rotation movements than does the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号