首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With an interest in identifying the variables that constrain arm choice when reaching, the authors had 11 right-handed participants perform free-choice and assigned-limb reaches at 9 object positions. The right arm was freely selected 100% of the time when reaching to positions at 30° and 40° into right hemispace. However, the left arm was freely selected to reach to positions at -30° and -40° in left hemispace 85% of the time. A comparison between free- and assigned-limb reaching kinematics revealed that free limb selection when reaching to the farthest positions was constrained by joint amplitude requirements and the time devoted to limb deceleration. Differences between free- and assigned-arm reaches were not evident when reaching to the midline and positions of ±10°, even though the right arm was freely selected most often for these positions. Different factors contribute to limb selection as a function of distance into a specific hemispace.  相似文献   

2.
Right-handers' reaching in contralateral hemispace: a kinematic observation   总被引:1,自引:0,他引:1  
C. Gabbard and C. Helbig (2004) found, when examining seated participants' limb selection for reaching and grasping in hemispace, that right-handers preferred to switch to the nondominant left arm for objects located approximately 20 degrees horizontally from body midline (90 degrees) in left hemispace. In the present study, the authors examined 13 strongly lateralized seated right-handers' kinematics of reaching to object positions ranging from body midline to 40 degrees horizontally in left hemispace. Participants executed faster reaches with the left arm than with the right arm to objects placed 20 degrees-40 degrees from midline, whereas they did not change the proportion of time they spent accelerating the hands when the position of the object changed. A 2nd main finding was an increase in the left hand's trajectory curvature as object position moved farther from midline, with a corresponding decrease in the contribution of upper-arm motion to the reach. Those observations suggest that the switch from dominant right-arm reaching to nondominant left-arm reaching in left hemispace reported in the aforementioned study may have emerged from a shift from a shoulder-driven reach to an elbow-driven action.  相似文献   

3.
Performance-based measures of hand preference have been developed as an objective method of examining handedness. Previous research using this method showed that both skill demands and the position of the object in working space affect preferential hand reaching. Specifically, preferred hand reaches predominated in left hemispace, in spite of the biomechanical inefficiency involved in reaching across the body midline. This was mediated by the skill demands, with a higher frequency of preferred hand reaches for tasks requiring more skill. To further examine this issue, we increased the task skill demands. Twenty-two right-handed adults reached for five tools located in an array of five positions in front of them. Participants were required to pick up the tool, pick up and demonstrate how to use it, or pick up and actually use the tool on the materials provided. The results showed that the frequency of right hand reaches was greatest for the tool use condition. This effect was mediated by the position of the object in hemispace, with more right hand reaches occurring for the Use task in left hemispace than the other tasks, in support of our previous work.  相似文献   

4.
Gabbard C  Rabb C 《Brain and cognition》2001,46(1-2):139-144
Imagined and actual motor performance were compared to determine what factor(s) drive limb selection for programming movements in contralateral hemispace. Forty right-handed blindfolded subjects were asked to 'reach' via auditory stimulus for a small object placed at multiple locations in hemispace. Two conditions were included: arms uncrossed and arms crossed. With the uncrossed condition, responses were similar. With arms crossed, subjects had the choice of keeping the limbs crossed, reacting to proximity, or uncrossing the arms to reach ipsilaterally. In this condition subjects 'imagined' that they would maintain the crossedposition and reach with the hand closest to the stimulus in both right and left hemispace. However, during 'actual' reaching, responses differed. For left-field stimuli, participants kept the arms crossed, but in response to right-field stimuli, subjects preferred to uncross the limbs in order to reach with the dominant hand. These findings suggest that while motor dominance is the primary factor in limb choice for action in ipsilateral hemispace, it appears that object proximity drives limb selection for reaching in contralateral hemispace.  相似文献   

5.
Individuals with stroke present several impairments in the ipsilesional arm reaching movements that can limit the execution of daily living activities. These impairments depend on the side of the brain lesion. The present study aimed to compare the arm reaching movements performed in sitting and standing positions and to examine whether the effects of the adopted posture configuration depend on the side of the brain lesion. Twenty right-handed individuals with stroke (half with right hemiparesis and a half with left hemiparesis) and twenty healthy adults (half used the left arm) reached toward a target displayed on a monitor screen placed in one of three heights (i.e., upper, central, or lower targets). Participants performed the reaches in sitting and standing positions under conditions where the target location was either well-known in advance (certainty condition) or unknown until the movement onset (uncertainty condition). The values of movement onset time, movement time, and constant error were compared across conditions (posture configuration and uncertainty) and groups for each target height. Individuals with stroke were slower and spent more time to start to move than healthy participants, mainly when they reached the superior target in the upright position and under the uncertainty condition. Individuals who have suffered a right stroke were more affected by the task conditions and those who suffered a left stroke showed less accurate reaches. Overall, these results were observed regardless of the adopted posture. The current findings suggested that ipsilesional arm reaching movements are not affected by the postural configuration adopted by individuals with stroke. The central nervous system modulates the reaching movements according to the target position, adopted posture, and the uncertainty in the final target position to be reached.  相似文献   

6.
Hemispace asymmetries and laterality effects were examined on an arm positioning reproduction task. Sixteen male subjects were asked to reproduce both abductive and adductive positioning movements with the left or right arm within either the left or the right hemispace. Hemispace was manipulated using a 90 degrees head-rotation paradigm. A left hemispace advantage in positioning accuracy was predicted for both left and right arm movements on the grounds that the perceptual-motor control of positioning movements made in left hemispace is primarily mediated by the right hemisphere which is known to be advantageous for tasks which are spatial in nature (Heilman, Bowers, & Watson, 1984). No arm laterality effects were predicted to occur because the proximal musculature involved in the control of arm movements is innervated from both contralateral and ipsilateral cerebral hemispheres (Brinkman & Kuypers, 1973). Results showed that the predicted left hemispace advantage was evident for the right arm on the positioning variability measure alone, whereas it was absent for all other possible conditions on all error measures. Laterality (arm) effects were absent as predicted. The experiment also demonstrated a greater degradation of reproduction performance under the ′crossed" arm-hemispace conditions than under the ′uncrossed" conditions. A plausible explanation for the uncrossed advantage for the task is that under normal conditions, a single hemisphere is primarily responsible for both controlling the contralateral arm and directing attention to the contralateral hemispace, and consequently potential interhemispheric interference is minimized. A clear response bias effect in movement reproduction was also evident as a function of the direction of concurrent arm movement and head rotation. Arm movements made in the same direction as head rotation were systematically undershot in reproduction to a much greater degree than arm movements made in the opposite direction to head rotation.  相似文献   

7.
The goal of the present investigation was to explore the possible expression of hemispheric-specific processing during the planning and execution of a bimanual reaching task. Participants (N = 9) completed 80 bimanual reaching movements (requiring simultaneous, bilateral production of arm movements) to peripherally presented targets while selectively attending to either their left or right hand. Further, targets were presented in spatially compatible (ipsilateral to the aiming limb) and incompatible (contralateral to the aiming limb) response contexts. It was found that the left hand exhibited temporal superiority over the right hand in the response planning phase of bimanual reaching, indicating a left hand/right hemisphere advantage in the preparation of a bimanual response. During response execution, and consistent with the view that interhemispheric processing time (Barthelemy & Boulinguez, 2002) or biomechanical constraints (Carey, Hargreaves, & Goodale, 1996) generate temporal delays, longer movement times were observed in response to spatially incompatible target positions. However, no hemisphere-specific benefit was demonstrated for response execution. Based on these findings, we propose lateralized processing is present at the time of response planning (i.e., left hand/right hemisphere processing advantage); however, lateralized specialization appears to be annulled during dynamic execution of a bimanual reaching task.  相似文献   

8.
The role of the hemispheres in closed loop movements   总被引:3,自引:0,他引:3  
The purpose of these experiments was to determine if the two hemispheres play different roles in controlling closed loop movements. Subjects were asked to move to a narrow or wide target in the left or right hemispace. Reaction time (RT) was faster for the left arm of normals, only in the right hemispace, but there were no differences between arms in movement execution. Right but not left hemisphere stroke (CVA) patients showed longer RTs for the contralateral but not ipsilateral arm. The right CVA group's ipsilateral movement, especially to narrow targets was less accurate. The left CVA group's RT did not benefit from advanced information, but ipsilateral movement execution was normal. These results were discussed in terms of inter- as well as intrahemispheric control of programming and execution of closed loop movements.  相似文献   

9.
The aim of this study was to assess whether perceptual representation along the horizontal axis is affected by hemispace position of the stimulus or by orienting attention to one side. Ten control subjects and 10 right brain damaged patients with left unilateral spatial neglect (USN) were asked to bisect lines of five lengths in three space positions (left, center, right) and under three cueing conditions (no cue, left cue, right cue). Normal controls showed significant displacement of bisection opposite to the side of hemispace presentation and toward the side of cueing. USN patients showed a bisection error toward the right end which increased with lines placed in the left hemispace and decreased with lines placed in the right hemispace and when attention was oriented toward the left side. We conclude that (1) In absence of cues normal subjects tend to overestimate the portions of space closer to their body midline; (2) both normal and USN patients tend to overestimate portions of space that they direct their attention to; (3) USN patients' performance without cueing is consistent with an attentional shift toward the right hemispace implying a gradient of overestimation of the right-most portions of space. A common neural substratum for directing attention and space representation can explain these findings.  相似文献   

10.
If we stand at a mirror’s edge, we can see one half of our body reflected in the mirror, as if it were the other half of our body, seen “through” the mirror. We used this mirror illusion to examine the effect of conflicts between visually and proprioceptively specified arm positions on subsequent reaching movements made with the unseen right arm. When participants viewed their static left arm in the mirror (i.e., as if it were their right arm), subsequent right-arm reaching movements were affected significantly more when there was conflict between the apparent visual and the proprioceptively specified right-arm positions than when there was no conflict. This result demonstrates that visual capture of arm position can occur when individual body parts are viewed in the mirror and that this capture has a measurable effect on subsequent reaching movements made with an unseen arm. The result has implications for how the brain represents the body across different sensory modalities.  相似文献   

11.
The present study describes a developmental performance measure of hand preference that considers task complexity and position in hemispace. Eighty right-handed children and adults (ages 3-4, 6-7, 9-10, 18-24) were observed for hand selection responses to 2 unimanual tasks (simple vs complex) across positions in hemispace. Results revealed an age-related trend in the tendency to use the preferred hand in right and left hemispace. While the adult's and 3- to 4-year-old's preferred hand use decreased as they moved into left hemispace, children between the ages of 6 and 10 years tended to use their preferred hands consistently throughout both regions of hemispace. The relationship between hand preference and skilled, cost-efficient performance throughout development are discussed.  相似文献   

12.
Strong leftward perceptual biases have been reported for the selection of the darker of two left/right mirror-reversed luminance gradients under free-viewing conditions. This study investigated the effect of unilateral hemispheric activation on this leftward bias in two groups of dextrals (N = 52 and N = 24). In Experiment 1, activation was manipulated by asking participants to tap with their left or right fingers along their midline. In Experiment 2, participants clenched their left or right hands in their respective hemispaces. Participants selected the stimulus that was darker on the left-hand side 73% of the time. Despite manipulations of activation strength and hemispace, activation had no effect on the asymmetry. If activation was important, the leftward bias should have been enhanced when the left hand/right hemisphere was active and reduced (or reversed) when the right hand/left hemisphere was active. The contribution of left-to-right scanning biases to free-viewing perceptual asymmetries is discussed as an alternative.  相似文献   

13.
The primary goal of this study was to examine the relations between limb control and handedness in adults. Participants were categorized as left or right handed for analyses using the Edinburgh Handedness Inventory. Three-dimensional recordings were made of each arm on two reach-to-place tasks: adults reached to a ball and placed it into the opening of a toy (fitting task), or reached to a Cheerio inside a cup, which they placed on a designated mark after each trial (cup task). We hypothesized that limb control and handedness were related, and we predicted that we would observe side differences favoring the dominant limb based on the dynamic dominance hypothesis of motor lateralization. Specifically, we predicted that the dominant limb would be straighter and smoother on both tasks compared with the nondominant limb (i.e., right arm in right-handers and left arm in left-handers). Our results only partially supported these predictions for right-handers, but not for left-handers. When differences between hands were observed, the right hand was favored regardless of handedness group. Our findings suggest that left-handers are not reversed right-handers when compared on interlimb kinematics for reach-to-place tasks, and reaffirm that task selection is critical when evaluating manual asymmetries.  相似文献   

14.
Subjects in five experiments matched tangible braille against a visible matching code. In Experiment 1, braille recognition suffered when entire lines of braille characters were tilted in varying amounts from the upright. Experiment 2 showed that tilt lowered performance for tangible, large embossed letters, as well as for braille. However, recognition was better for print letters than it was for braille. In Experiment 3, subjects attempted to match the upright array against embossed braille that was left/right reversed, inverted up/down, or rotated +180°. Performance was close to that for normal braille in the left/right reversal condition, and very low for the +180° rotation group. These results on braille tilt in the “picture plane” may reflect difficulty in manipulating the tangible “image.” Braille recognition performance was not lowered whenthe visible matching array was tilted ?45° or ?90° from the upright but the tangible stimuli were upright. In Experiment 4, recognition of left/right reversed braille that was physically horizontal (on the bottom of a shelf) was compared with that of braille left/right reversed due to its location on the back of a panel, in the vertical plane. Braille recognition accuracy was higher with braille located vertically. An additional experiment showed the beneficial effect of locating braille in the vertical, frontoparallel plane, obtained with +90° degree rotated braille. It is proposed that optimal tactual performance with tangible arrays might depend on touching position, and on the physical position of stimuli in space. Just as there are good and poor viewing positions, there may be optimal touching positions. The effects of tilt on braille identification were diminished for blind subjects, suggesting the importance of tactile experience and skill.  相似文献   

15.
Stroke individuals frequently have balance problems and impaired arm movements that affect their daily activities. We investigated the influence of target uncertainty and the side of the brain lesion on the performance of arm movements and postural adjustments during reaching in a standing position by stroke individuals. Participants stood on force plates and reached a target displayed on the center of a monitor screen under conditions differentiated by the prior knowledge of the target location at the beginning of the movement. Individuals who had a stroke in the right side of the brain performed the tasks with the ipsilesional, right upper limb while the individuals with a left stroke performed with the ipsilesional, left upper limb. Healthy individuals performed with right and left limbs, which data were later averaged for statistical analysis. Kinematic analysis of the arm and lower limb joints and displacements of the center of pressure of each lower limb were compared between target conditions and groups. Stroke individuals showed larger center of pressure displacements of the contralesional compared to the ipsilesional limb while these displacements were symmetrical between lower limbs for the healthy individuals, regardless of the target condition. The target uncertainty affected both the characteristics of the arm movements and postural adjustments before movement onset. Right stroke individuals used more ankle joint movements under the uncertain compared to the certain condition. The uncertainty in target location affects the arm reaching in upright standing, but the effects depend on the side of the brain lesion.  相似文献   

16.
The authors examined the resolution of a discrepancy between visual and proprioceptive estimates of arm position in 10 participants. The participants fixed their right shoulder at 0°, 30°, or 60° of transverse adduction while they viewed a video on a head-mounted display that showed their right arm extended in front of the trunk for 30 min. The perceived arm position more closely approached the seen arm position on the display as the difference between the actual and visually displayed arm positions increased. In the extreme case of a 90° discrepancy, the seen arm position on the display was very gradually perceived as approaching the actual arm position. The magnitude of changes in sensory estimates was larger for proprioception (20%) than for vision (< 10%).  相似文献   

17.
Response latencies were measured to vibrotactile stimulation delivered to the forefingers of the left or right hands which were positioned ipsilaterally or contralaterally (across the midline) in left or right hemispace. While the two hands did not differ in speed of response, either hand performed better when located in right hemispace (experiment 1). This effect was greatly reduced, though not eliminated, with 90 degrees lateral head turn, when performance was better with stimulation and responding in right-of-head hemispace, but not right-of-body hemispace (experiment 2). When different hands received stimulation and initiated responses, and were located in either the same or opposite hemispace, right-hemispace superiority was found to be motor rather than sensory (experiment 3). These findings are discussed in the context of the true and the phenomenological midline and the clinical syndrome of hemineglect.  相似文献   

18.
It is known that the illusory displacement of a vibrated limb can be transferred to a nonvibrated contacted limb. The purpose of this study was to quantify and compare the transferred illusory displacements occurring in the intrapersonal and near-personal space. In two tasks, 8 male and 8 female blindfolded subjects estimated (1) the height of the left elbow and (2) the height of an external object located at the same height as the left elbow, by the proprioception of the right arm which was Subject to illusory displacement. If the internal representation of the left elbow in one's body schema could provide precise information of its static position independently of the proprioception of the right arm, the perceived displacement of the right arm might be smaller when influenced by proprioceptive information from the static left arm, than when in contrast instead with an object which is not a body part. There was no difference in the estimation of illusory displacement between male and female subjects and between right and left arms. No significant difference was observed between transferred displacements of the left elbow and the object. This means that the perception of limb position sensed by the proprioception of another limb can be distorted as easily as the perception of location of an external object. This suggests that the internal representation of static limb position is not enough to provide the correct information of current limb position in the absence of vision.  相似文献   

19.
Infants from 16 to 20 weeks were presented with objects moving across a 60-cm distance. Tracking increased between 16 and 18 weeks, reaching increased at 18 weeks, and arm lifts (swipes) showed no age change. A right spatial field bias in tracking disappeared gradually. Swipes occurred most often in front of the object, when it was moving in the center field, presumably as reactions due to spatial proximity. Reaching occurred in the peripheral spatial fields in the younger infants, but in the older infants most often in the center spatial field. Moreover, reaching occurred generally more often toward the left spatial field and predicted the emergence of tracking the left spatial field. Thus, it appeared that a bias in reaching corrected a bias in tracking. Similar effects of limb movements, especially when reaching, were found in the successful treatment of visual neglect patients in neuropsychological research.  相似文献   

20.
Faces learned from multiple viewpoints are recognized better with left than right three-quarter views. This left-view superiority could be explained by perceptual experience, facial asymmetry, or hemispheric specialization. In the present study, we investigated whether left-view sequences are also more effective in recognizing same and novel views of a face. In a sequential matching task, a view sequence showing a face rotating around a left (?30°) or a right (+30°) angle, with an amplitude of 30°, was followed by a static test view with the same viewpoint as the sequence (?30° or +30°) or with a novel one (0°, +30°, or ?30°). We found a superiority of left-view sequences independently of the test viewpoint, but no superiority of left over right test views. These results do not seem compatible with the perceptual experience hypothesis, which predicts superiority only for left-side test views (?30°). Also, a facial asymmetry judgement task showed no correlation between the asymmetry of individual faces and the left-view sequence superiority. A superiority of left-view sequences for novel as well as same test views argues in favour of an explanation by hemispheric specialization, because of the possible role of the right hemisphere in extracting facial identity information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号