首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
While looking through laterally displacing prisms, subjects pointed sagittally 80 times at an objectively straight-ahead target, completing a reciprocal out-and-back pointing movement every 1, 3, or 6 s. Visual feedback was available early in the pointing movement or only late at the end of movement. Aftereffect measures of adaptive shift (obtained after every 10 pointing trials) showed adaptive change only in limb position sense (i.e., proprioceptive adaptation) when movement duration was 1 s, regardless of visual feedback condition; but as movement duration increased, adaptive change in the eye position sense (i.e., visual adaptation) increased while proprioceptive adaptation decreased, especially for the late visual feedback condition. Regardless of visual feedback condition, proprioceptive adaptation showed the maximal rate of growth with the 1-s movement duration, whereas visual adaptation showed maximal growth with the 6-s movement duration. These results provide additional support for a model of adaptive spatial mapping in which the direction of strategically flexible coordination (guidance) between eye and limb (and consequently the locus of adaptive spatial mapping) is jointly determined by movement duration and timing of visual feedback. An additional effect of movement duration is to determine the rate of discordant inputs. Maximal growth of adaptation occurs when the input rate matches the response time of the spatial mapping function.  相似文献   

2.
Tracking tasks known to facilitate or interfere with one another were investigated under various sequences of alternation. Double and treble alternating sequences of 2 tasks were used. 6 groups of 12 Ss practiced for 20 10-sec. trials, with 50-sec. intertrial intervals. Trend analyses were employed in comparing the results of the double and treble alternating sequences with the single alternating sequence and postshift trials of the previous study (Laszlo & Pritchard, 1969). The results showed that facilitation or interference lost with single alternation was recovered with double or treble alternating sequences. Rate and degree of recovery appeared to depend upon the degree of transfer between tasks and strategies employed by S. These results were discussed in terms of motor program consolidation.  相似文献   

3.
The effects of movement time and time to visual feedback (feedback time) on prism exposure aftereffects and direct effects were studied. In Experiment 1, the participants' (N = 60) pointing limb became visible early in the movement (.2-s feedback time, and eye-head aftereffects increased with increasing movement time (.5 to 3.0 s), but larger hand-head aftereffects showed little change. Direct effects (terminal error during exposure) showed near-perfect compensation for the prismatic displacement (11.4 diopters) when movement time was short but decreasing compensation with longer movement times. In Experiment 2, participants' (N = 48) eye-head aftereffects increased and their larger hand-head aftereffects decreased with increasing movement time (2.0 and 3.0 s), especially when feedback time increased (.25 and 1.5 s). Direct effects showed increasing overcompensation for longer movement and feedback times. Those results suggest that aftereffects and direct effects measure distinct adaptive processes, namely, spatial realignment and strategic control, respectively. Differences in movement and feedback times evoke different eye -hand coordination strategies and consequent direct effects. Realignment aftereffects also depend upon the coordination strategy deployed, but not all strategies support realignment. Moreover, realignment is transparent to strategic control and, when added to strategic correction, may produce nonadaptive performance.  相似文献   

4.
Spatial and metrical parameters of the eye and arm movements made by human subjects (N = 7) in response to visual targets that were stepped unexpectedly either once (single step) or twice (double step) were studied. For the double-step, the displacement of a visual target was decreased or increased in amplitude at intervals before and during a movement. Provided the second target step occurred more than 100 ms before the onset of movement, the amplitude of the subjects' first response was altered in the direction of the new target location. But this amplitude scaling was not always sufficient to reach the new target location, and a second corrective response was required. The latency in producing this second response was greatly increased above reaction time latencies of movements to single-step targets, especially when the target change occurred 100 ms or more before movement onset. These findings suggest that even though serial processing limitations delay the production of a second corrective response, continuous parallel processing of visual information enables the amplitude of the first response to be altered with minimal delay. This enables some degree of real-time continuous control by the visuomotor control system.  相似文献   

5.
Spatial and metrical parameters of the eye and arm movements made by human subjects (N = 7) in response to visual targets that were stepped unexpectedly either once (single step) or twice (double step) were studied. For the double-step, the displacement of a visual target was decreased or increased in amplitude at intervals before and during a movement. Provided the second target step occurred more than 100 ms before the onset of movement, the amplitude of the subjects' first response was altered in the direction of the new target location. But this amplitude scaling was not always sufficient to reach the new target location, and a second corrective response was required. The latency in producing this second response was greatly increased above reaction time latencies of movements to single-step targets, especially when the target change occurred 100 ms or more before movement onset. These findings suggest that even though serial processing limitations delay the production of a second corrective response, continuous parallel processing of visual information enables the amplitude of the first response to be altered with minimal delay. This enables some degree of real-time continuous control by the visuomotor control system.  相似文献   

6.
Subjects wore goggles with prisms that laterally displaced the visual field (rightward by 11.4°) and with full view of the limb engaged in paced (2-s rate) sagittal pointing at either an implicit (“straight ahead of the nose”) target (Experiment 1) or an explicit (positioned leftward by 11.4°) target (in Experiment 2). In experimental conditions, subjects performed a secondary cognitive task (mental arithmetic) simultaneously during target pointing. In control conditions, no cognitive load was imposed. Aftereffect measures of adaptation to the prismatic displacement were not substantially different when problem solving was required, but terminal error of the exposure pointing task was reliably affected by cognitive load. These results are consistent with the hypothesis of separable mechanisms for adaptive coordination and adaptive alignment. Adaptive coordination may be mediated by strategically flexible coordinative linkage between sensory–motor systems (eye–head and hand—head), but spatial alignment seems to be mediated by adaptive encoders within coordinatively linked subsystems. If the coordination task involves predominately automatic processing, coordinative linkage can be frequent enough under cognitive load for substantial realignment to occur even though exposure performance (adaptive coordination) may be less than optimal.  相似文献   

7.
The control of a cursor on a computer monitor offers a simple means of exploring the limits of the plasticity of human visuomotor coordination. The authors explored the boundary conditions for adaptation to nonlinear visuomotor amplitude transformations. The authors hypothesized that only with terminal visual feedback during practice, but not with continuous visual feedback, humans might develop an internal model of the nonlinear visuomotor amplitude transformation. Thus, 2 groups were engaged in a sensorimotor adaptation task receiving either continuous or terminal visual feedback during the practice phase. In contrast to expectations, adaptive shifts and aftereffects observed in visual open-loop tests were linearly related to target amplitudes for both groups. Although the 2 feedback groups did not differ with respect to adaptive shifts and aftereffects, terminal visual feedback resulted in stable visual open-loop performance for an extended period, whereas movement errors increased after continuous visual feedback during practice. The benefit of continuous visual feedback, on the other hand, was faster closed-loop performance, indicating an optimization of visual closed-loop control.  相似文献   

8.
In 2 prism adaptation experiments, the authors investigated the effects of limb starting position visibility (visible or not visible) and visual feedback availability (early or late in target pointing movements). Thirty-two students participated in Experiment 1 and 24 students participated in Experiment 2. Independent of visual feedback availability, constant error was larger and variable error was smaller for target pointing when limb starting position was visible during prism exposure. Independent of limb starting position visibility, aftereffects of prism exposure were determined by visual feedback availability. Those results support the hypothesis that calibration is determined by limb starting position visibility, whereas alignment is determined separately by visual feedback availability.  相似文献   

9.
Two types of adaptive processes involved in prism adaptation have been identified: slower spatial realignment among the several unique sensorimotor coordinate systems (spatial maps) and faster strategic motor control responses (including skill learning and calibration) to spatial misalignment. One measures the 1st process by assessing the aftereffects of prism exposure, whereas direct effects of the prism during exposure are a measure of the 2nd process. A model is described that relates those adaptive processes and distinguishes between extraordinary alignment and ordinary calibration. A conformal translation algorithm that operates on the hypothesized circuitry is proposed. The authors apply the model to explain the advantage of visual calibration when the limb is seen in the starting position prior to movement initiation. Implications of the model for the use of prism adaptation as a tool for investigation of motor control and learning are discussed.  相似文献   

10.
Terminal target-pointing error on the 1st trial of exposure to optical displacement is usually less than that expected from the optical displacement magnitude. Such 1st trial adaptation was confirmed in 2 experiments (N = 48 students in each) comparing pointing toward optically displaced targets and toward equivalent physically displaced targets (no optical displacement), with visual feedback delayed until movement completion. First-trial performance could not be explained by ordinary target undershoot, online correction, or reverse optic flow information about true target position and was unrelated to realignment aftereffects. Such adaptation might be an artifact of the asymmetry of the structured visual field produced by optical displacement, which induces a felt head rotation opposite to the direction of the displacement, thereby reducing the effective optical displacement.  相似文献   

11.
采用视觉搜索任务对33名大学生在不同视野中目标搜索过程的眼睛运动进行记录,以探讨不同视野位置的视觉搜索的差异性。研究结果表明,视觉搜索存在明显的空间不对称性,它主要体现在左右视野之间的差异上,具体表现在搜索反应时、平均注视时间以及眼睛跳动等方面。视觉搜索中存在很强的策略,其中主要为水平搜索或垂直搜索,因此,长期的练习和习惯也将影响视觉搜索过程。  相似文献   

12.
Dual adaptation to different amounts or directions of prismatic displacement, or both, can be acquired and maintained with little mutual interference. Associative recalibration of the regional task- or workspace, contingent on differentiation of distinguishing sensory information, can explain such adaptation. In contrast, nonassociative realignment restores dimensional mapping among spatial representations. Methods for measuring the separate contributions of those 2 kinds of prism adaptation are identified in the present article. On the basis of a critique of dual-adaptation studies, the authors suggest that recalibration can explain the data but that the method used in those experiments confounded realignment and might have obscured the effectiveness of dual-calibration training.  相似文献   

13.
Poststroke hemiparetic individuals (n = 9) and a control group (n = 9) completed a frequency-scaled circle-drawing task in unimanual and bimanual conditions. Measures of intralimb spatial and temporal task accuracy and interlimb coordination parameters were analyzed. Significant reductions in task performance were seen in both limbs of the patients and controls with the introduction of bimanual movement. Spatial performance parameters suggested that the 2 groups focused on different hands during bimanual conditions. In the controls, interlimb coordination variables indicated predictable hand dominance effects, whereas in the patient group, dominance was influenced by the side of impairment and prior handedness of the individual. Therefore, in this particular bimanual task, performance improvements in the hemiplegic side could not be elicited. Intrinsic coupling asymmetries between the hands can be altered by unilateral motor deficits.  相似文献   

14.
What visual information do children normally require for the control of reaching movements? How is performance affected when children do not have access to the preferred mode of perceptual information? These questions were studied in 28 children who were tested on 3 occasions: at 6, 7, and 8 years of age. The task was to pick beads, 1 at a time, from 1 cup and carry them to another cup. With the aid of a mirror arrangement and a curtain, the amount of visual information was manipulated with regard to both the target and the performing hand. The movements were monitored with an optoelectronic device (SELSPOT II) and analyzed in terms of transport and object-handling phases. Results showed that object handling required visual information on both hand and target. For the transport phase of the movement, visual information on the spatial location of the target was sufficient, and sight of the hand did not improve performance. In contrast to adult subjects, when children did not have access to the required visual information, their performances deteriorated markedly. These results indicate that from the age of 6, children use visual information for control of arm movements in a manner like that of adults, although with less accuracy and speed. However, even 8-year-old children are limited in their ability to use alternative perceptual strategies for movement control, and they therefore become less flexible and more dependent on visual information.  相似文献   

15.
Prism adaptation (PA) is a widely used intervention for (visuo‐)spatial neglect. PA‐induced improvements can be assessed by visual search tasks. It remains unclear which outcome measures are the most sensitive for the effects of PA in neglect. In this review, we aimed to evaluate PA effects on visual search measures. A systematic literature search was completed regarding PA intervention studies focusing on patients with neglect using visual search tasks. Information about study content and effectiveness was extracted. Out of 403 identified studies, 30 met the inclusion criteria. The quality of the studies was evaluated: Rankings were moderate‐to‐high for 7, and low for 23 studies. As feature search was only performed by five studies, low‐to‐moderate ranking, we were limited in drawing firm conclusions about the PA effect on feature search. All moderate‐to‐high‐ranking studies investigated cancellation by measuring only omissions or hits. These studies found an overall improvement after PA. Measuring perseverations and total task duration provides more specific information about visual search. The two (low ranking) studies that measured this found an improvement after PA on perseverations and duration (while accuracy improved for one study and remained the same for the other). This review suggests there is an overall effect of PA on visual search, although complex visual search tasks and specific visual search measures are lacking. Suggestions for search measures that give insight in subcomponents of visual search are provided for future studies, such as perseverations, search path intersections, search consistency and using a speed–accuracy trade‐off.  相似文献   

16.
Objective difficulty of a single-component visually controlled movement may be defined by Fitts's (1954) Index of Difficulty, which is a measure of difficulty in the sense that movement time is linearly related to the objective measure. For movements that have multiple components, it becomes difficult to determine an objective measure of task difficulty due to unknown interactions between components of the movement and interactions with other factors. Thus, it may be necessary to use indirect methods for allocating a measure of task difficulty. The purpose of the study was to determine whether participants could validly construct a subjective measure of the movement difficulty and whether this measure was related to the known objective measure of difficulty. Experiments showed that for single-component movements, there was a close relationship between measures of subjective and objective difficulty. With two-component visually controlled movements it was found that subjective difficulty could be related to objective difficulty, but not as simply as for single-component tasks.  相似文献   

17.
Three experiments were performed on reach and grasp in 9- to 10-year-old children (8 controls and 8 with developmental coordination disorder [DCD]). In normal reaching, children in the DCD group were less responsive to the accuracy demands of the task in controlling the transport component of prehension and spent less time in the deceleration phase of hand transport. When vision was removed as movement began, children in the control group spent more time decelerating and reached peak aperture earlier. Children in the DCD group did not do that, although, like the control group, they did increase grip aperture in the dark. When depth cues were reduced and only the target or only the target and hand were visible, children in the control group used target information to maintain the same grip aperture in all conditions, but DCD children behaved as if the target was not visible. Throughout the studies, the control group of 9- to 10-year-olds did not produce adult-like adaptations to reduced vision, suggesting that they had not yet attained adult-like integration of sensory input. Compared with control children, children with DCD did not exhibit increased dependence on vision but showed less recognition of accuracy demands, less adaptation to the removal of vision, and less use of minimal visual information when it was available.  相似文献   

18.
余萌  李晶 《心理科学进展》2021,29(3):450-459
人类如何处理并交换空间信息是现有空间认知领域的热点问题, 这一过程主要是通过涉空对话实现的。在涉空对话中存在着表征对齐现象, 互动双方在对话中会实现空间术语、空间参照系及空间视角等表征的对齐。空间场景物理特征和人与人的协作都会影响表征对齐的程度, 而实现表征对齐的生理基础是对话双方神经活动的一致性。未来可继续探究表征对齐的作用机制, 如与个体空间偏好的关系, 以及合作伙伴特征如何影响表征对齐的程度等。  相似文献   

19.
适应范式为考察各种心理现象或心理过程的机制提供了一条重要的途径。本文在简要介绍传统适应范式和功能性磁共振适应范式的基础上,重点回顾了它们在人脸知觉研究中的应用,提出人脸适应后效除源于尺寸和朝向等低、中水平物理信息的编码加工外,更多地基于身份和性别等高水平社会信息的编码,且其效应量依赖于高水平的基于标准的竞争性编码加工机制。对人脸类别属性的编码标准和时效性等问题仍有待进一步分析。  相似文献   

20.
视觉表象操作加工的眼动实验研究   总被引:1,自引:0,他引:1  
张霞  刘鸣 《心理学报》2009,41(4):305-315
本研究通过视觉表象旋转和扫描的眼动实验探讨表象的心理表征方式。实验一结果表明,眼动指标具有与反应时相类似的旋转角度效应。实验二结果显示,表象扫描的反应时和眼动指标都具有与知觉扫描加工一样的距离效应。由此可以认为,表象眼动与知觉眼动模式具有相似性;表象具有相对独立的心理表征方式并有其特殊的加工过程;表象的心理表征可以是形象表征,而非一定是抽象的命题或符号表征  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号