首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elite dancers perform highly skilled and consistent movements. These movements require effective regulation of the intrinsic and extrinsic forces acting within and on the body. Customized, compliant floors typically used in dance are assumed to enhance dance performance and reduce injury risk by dampening ground reaction forces during tasks such as landings. As floor compliance can affect the extrinsic forces applied to the body, secondary effects of floor properties may be observed in the movement consistency or kinematic variability exhibited during dance performance. The aim of this study was to investigate the effects of floor mechanical properties on lower extremity kinematic variability in dancers performing landing tasks. A vector coding technique was used to analyze sagittal plane knee and ankle joint kinematic variability, in a cohort of 12 pre-professional dancers, through discrete phases of drop landings from a height of 0.2 m. No effect on kinematic variability was observed between floors, indicating that dancers could accommodate the changing extrinsic floor conditions. Future research may consider repeat analysis under more dynamic task constraints with a less experienced cohort. However, knee/ankle joint kinematic variability was observed to increase late in the landing phase which was predominantly comprised of knee flexion coupled with the terminal range of ankle dorsiflexion. These findings may be the result of greater neural input late in the landing phase as opposed to the suggested passive mechanical interaction of the foot and ankle complex at initial contact with a floor. Analysis of joint coordination in discrete movement phases may be of benefit in identifying intrinsic sources of variability in dynamic tasks that involve multiple movement phases.  相似文献   

2.
The role of timing in the control of multijoint pointing movements was evaluated. Eight subjects performed rapid pointing movements to a variety of target locations. The subject's right arm was strapped to a 2 degrees of freedom manupilandum that permitted shoulder and elbow motion in the horizontal plane. Initial and final position of the hand and magnitude of displacement was varied to determine effects on timing characteristics. Kinematics and kinetics of the shoulder, elbow, and hand were analyzed. The hand paths and velocity profiles observed were consistent with prior reports. Multiple regression analysis of kinematic variables disclosed that timing of joint movement onset was independent of initial and final positions of the hand, but was linearly related to joint displacement: the joint that moved farther started moving first. Using computer simulations to create joint movement onset, times that were different from the observed ones always resulted in hand paths with increased curvatures and loss of the smooth velocity profiles. Secondly, a very stable, linear relationship was observed between peak velocity and displacement at both the elbow and shoulder joints. This relationship was not affected by variations in movement space. We suggest that space-time transformation based on difference in joint displacement is used to regulated timing of joint movement onset. The simulations indicate that this transformation is set to produce smooth velocity profiles. The relationships between timing of movement onset and displacement and between peak velocity and displacement complement each other: by maintaining a linear relationship between velocity and displacement, a linear space time transformation can be used to control timing. Furthermore, these relationships are probably used to simplify coordination between the moving joints.  相似文献   

3.
Eyes move over visual scenes to gather visual information. Studies have found heavy-tailed distributions in measures of eye movements during visual search, which raises questions about whether these distributions are pervasive to eye movements, and whether they arise from intrinsic or extrinsic factors. Three different measures of eye movement trajectories were examined during visual foraging of complex images, and all three were found to exhibit heavy tails: Spatial clustering of eye movements followed a power law distribution, saccade length distributions were lognormally distributed, and the speeds of slow, small amplitude movements occurring during fixations followed a 1/f spectral power law relation. Images were varied to test whether the spatial clustering of visual scene information is responsible for heavy tails in eye movements. Spatial clustering of eye movements and saccade length distributions were found to vary with image type and task demands, but no such effects were found for eye movement speeds during fixations. Results showed that heavy-tailed distributions are general and intrinsic to visual foraging, but some of them become aligned with visual stimuli when required by task demands. The potentially adaptive value of heavy-tailed distributions in visual foraging is discussed.  相似文献   

4.
The authors investigated whether visual fixations during a continuous graphical task were related to arm endpoint kinematics, joint motions, or joint control. The pattern of visual fixations across various shapes and the relationship between temporal and spatial events of the moving limb and visual fixations were assessed. Participants (N=16) performed movements of varying shapes by rotating the shoulder and elbow joints in the transverse plane at a comfortable pace. Across shapes, eye movements consisted of a series of fixations, with the eyes leading the hand. Fixations were spatially related to modulation of joint motion and were temporally related to the portions of the movement where curvature was the highest. Gathering of information related to modulation of interactive torques arising from passive forces from movement of a linked system occurred when the velocity of the movement (a) was the lowest and (b) was ahead of the moving limb, suggesting that that information is used in a feedforward manner.  相似文献   

5.
Kinematic adaptations in multijoint rhythmic drawing movements were investigated under unexpected perturbations in friction levels between stylus and writing surface. Changes in coupling and stability properties were assessed as a function of practice level by applying perturbations to subjects' dominant and nondominant limbs. Under nonperturbation and perturbation conditions, joint motions of right-handed subjects were highly coupled in the nondominant limb and uncoupled in the dominant limb. Stability analyses of the kinematic responses in the phase plane showed a relatively higher intrajoint resistance to perturbations in the nondominant limb as compared to the dominant limb for the elbow joint. indicating a decrease in global joint stiffness with practice. These changes in joint coupling and stiffness with practice were not observed for left-handed subjects. In addition, the stability to perturbations in the end-effector (stylus) kinematics was related to the amount of joint coupling in the nondominant limb, whereas in the dominant limb there existed no such coupling. It was concluded that (a) practice changes the responses to perturbations from anatomically specific early in practice to task-specific late in practice, and (b) this shift is related to the stability in the joint phase-plane dynamics, degree of coupling between joint angles, and the decoupling of the dynamics in the intrinsic and extrinsic control spaces.  相似文献   

6.
Two main questions were addressed in the present study. First, does the existence of kinematic regularities in the extrinsic space represent a general rule? Second, can the existence of extrinsic regularities be related to specific experimental situations implying, for instance, the generation of compliant motion (i.e. a motion constrained by external contact)? To address these two questions we studied the spatio-temporal characteristics of unconstrained and compliant movements. Five major differences were observed between these two types of movement: (1) the movement latency and movement duration were significantly longer in the compliant than in the unconstrained condition; (2) whereas the hand path was curved and variable according to movement direction for the unconstrained movements, it was straight and invariant for the compliant movements; (3) whereas the movement end-point distribution was roughly circular for the unconstrained movements, it was consistently elongated and typically oriented in the movement direction for the compliant movements; (4) whereas constant errors varied as a function of target eccentricity for the unconstrained movements, they were independent of this factor for the compliant movements; (5) the instruction to move the final effector along a straight line path influenced the characteristics of the unconstrained movements but not the characteristics of the compliant movements. When considered together, the previous observations suggest that compliant and unconstrained movements involve different planning strategies. Our data support the hypothesis that unconstrained motions, unlike compliant motions, are not programmed to follow a straight line path in the extrinsic space. This observation provides a theoretical frame of reference within which some apparently contradictory results reported in the movement generation literature may be explained.  相似文献   

7.
With the goal of reducing injury and enhancing performance, movement screening tools score an individual’s movements against a standard and because it is a predictor of injury symmetry is often included in the score. Movement quality screening tools only consider kinematic asymmetry, which may underestimate the degree of asymmetry present during movement. Consider joint forces: if these forces are atypical, additional stress is created and control is reduced, which can lead to injury if the asymmetry is not addressed. The purpose of this study is to investigate movement symmetry in the kinematic, kinetic and muscle activity components of movement during a parallel squat.Thirty-four healthy individuals completed five body-weight, parallel squats. A motion capture system, two portable force plates, and electromyography (EMG) sensors recorded the squat motion, ground reaction forces and muscle activity. The variables of interest were the joint angles, joint moments, and EMG waveforms. Cross-correlations and normalized root-mean-square values were calculated for the left and right ankles, knees, and hips for each variable. A repeated-measures analysis of variance (ANOVA) tested for differences in symmetry (cross-correlation and nRMS) between the kinematic, kinetic, and muscle activity components at the ankle, knee, and hip during the squat.At all joints the kinematic component had the highest degree of symmetry, and the kinetic and muscle activity components showed poorer symmetry, with the muscle activity component being the least symmetric. The differences in symmetry between movement components suggests that movement performance evaluations should not rely exclusively on kinematics and observation to identify potential movement faults.  相似文献   

8.
Much sensory-motor behavior develops through imitation, as during the learning of handwriting by children. Such complex sequential acts are broken down into distinct motor control synergies, or muscle groups, whose activities overlap in time to generate continuous, curved movements that obey an inverse relation between curvature and speed. The adaptive vector integration to endpoint handwriting (AVITEWRITE) model of Grossberg and Paine (2000) [A neural model of corticocerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Networks, 13, 999-1046] addressed how such complex movements may be learned through attentive imitation. The model suggested how parietal and motor cortical mechanisms, such as difference vector encoding, interact with adaptively-timed, predictive cerebellar learning during movement imitation and predictive performance. Key psychophysical and neural data about learning to make curved movements were simulated, including a decrease in writing time as learning progresses; generation of unimodal, bell-shaped velocity profiles for each movement synergy; size scaling with isochrony, and speed scaling with preservation of the letter shape and the shapes of the velocity profiles; an inverse relation between curvature and tangential velocity; and a two-thirds power law relation between angular velocity and curvature. However, the model learned from letter trajectories of only one subject, and only qualitative kinematic comparisons were made with previously published human data. The present work describes a quantitative test of AVITEWRITE through direct comparison of a corpus of human handwriting data with the model's performance when it learns by tracing the human trajectories. The results show that model performance was variable across the subjects, with an average correlation between the model and human data of 0.89+/-0.10. The present data from simulations using the AVITEWRITE model highlight some of its strengths while focusing attention on areas, such as novel shape learning in children, where all models of handwriting and the learning of other complex sensory-motor skills would benefit from further research.  相似文献   

9.
Previous studies demonstrate that observing the movements of others can interfere with concurrent movement execution. This interference effect is attributed to incongruence between the observed and executed movements. The study presented here examined different aspects of observed and executed movement congruency. Participants attempted to trace straight lines in the air using one of two movement tasks while observing an experimenter perform movements varied by their task and spatial congruency. The data revealed that kinematic aspects of the observed movements were incorporated into the observer's own movements. Observing the same kinematics led to interference or facilitation effects depending on whether the direction of the observed movement was congruent or incongruent with the movement the participant performed. These data suggest that low-level properties of observed movements can modulate participant performance.  相似文献   

10.
In Experiment 1, blindfolded observers judged (a) the distance of pathways felt by hand and (b) the straight-line distance between pathway endpoints inferred from such exploration. In Experiment 2, blindfolded observers made corresponding estimates after traversing similar pathways on foot. Pathways were explored under three different speeds. Under both manipulatory and ambulatory exploration, there was substantial length distortion of inferred distance: The straight-line distance was increasingly overestimated with increases in the length of the explored pathway. With manipulatory exploration, slower movements increased length distortion, but duration effects proved secondary to effects of spatial extent. For ambulatory exploration, no duration effects were obtained. Observers used time-independent heuristics, that is, a footstep metric for estimating the pathway actually travelled and a spatial imaging strategy for estimating the inferred line between pathway endpoints. The studies establish length distortion as a general phenomenon in movement space and identify its major causes as spatial rather than temporal.  相似文献   

11.
Impedance control has been suggested as the strategy employed by the central nervous system to control human postures and movements. A realization of this strategy is presented that uses a model predictive control algorithm as a higher motor controller. External disturbances are explicitly included in the model. The combination of 3 key factors-joint impedance control, model predictive controller, and external disturbance input-forms the basis for the generality of this model. The model was applied to 3 different types of joint movements: a tracking movement with an unpredicted disturbance, a rhythmic movement, and an unstable biped model of human walking. Computer simulation results showed excellent performance of the model in all 3 cases for optimal values of active joint impedances and an exact match between the musculoskeletal system and the model internal to the model predictive controller. The controller was also able to maintain acceptable performance in the presence of a 25% mismatch between the musculoskeletal system and its internal model.  相似文献   

12.
According to the two-thirds power law the cube of the speed of a drawing movement is proportional to the radius of curvature of the trajectory, and the coefficient of proportionality has the meaning of mechanical power. We derive this empirical law from the variational principle known in physics as the principle of least action. It states that if a movement between two points of a given path obeys the two-thirds law, then the amount of work required to execute a trajectory in a fixed time is minimal. In this strict sense one may say that among infinitely many ways to execute a given path, the central nervous system chooses the most economical. We show that the kinematic equations for all drawing movements are solutions of a certain differential equation with a single (time-variable) coefficient. We consider several special cases of drawing movements corresponding to simplest forms of this coefficient. Copyright 2001 Academic Press.  相似文献   

13.
The present study investigated the effect of psychological stress imposed on movement kinematics in a computer-simulated batting task involving a backward and forward swing of the forearm. The psychological stress was imposed by a mild electric stimulus following poor performance. Fourteen participants hit a moving ball with a horizontal lever and aimed at a distant target with as much accuracy as possible. The kinematic characteristics appearing under stress were delay of movement initiation, small amplitude of movement and low variability of spatial kinematic events between trials. These features were also found in previous studies in which the experimental task required high accuracy. The characteristic kinematics evident in the present study suggested that the movement strategies adopted by the stressed participants were similar to those that appear under high accuracy demand. Moreover, a correlation analysis between the onset times of kinematic events revealed that temporally consistent movements were reproduced under stress. Taken together, the present findings demonstrated that, under psychological stress, movement strategies tend to shift toward the production of more constrained trajectories, as is seen under conditions of high accuracy demand, even though the difficulty of the task itself does not change.  相似文献   

14.
Thirty-two children with Developmental Coordination Disorder (DCD) and learning disabilities (LD) and their age-matched controls attending normal primary schools were investigated using kinematic movement analysis of fine-motor performance. Three hypotheses about the nature of the motor deficits observed in children with LD were tested: general slowness hypothesis, limited information capacity hypothesis, and the motor control mode hypothesis. Measures of drawing movements were analyzed under different task conditions using a Fitts' paradigm. In a reciprocal aiming task, the children drew straight-line segments between two targets 2.5 cm apart. Three Target Sizes were used (0.22, 0.44, and 0.88 cm). Children used an electronic pen that left no trace on the writing tablet. To manipulate the degree of open-loop movement control, the aiming task was performed under two different control regimes: discrete aiming and cyclic aiming. The kinematic analysis of the writing movements of the 32 children with DCD/LD that took part in the experimental study confirmed that besides learning disabilities they have a motor learning problem as well. Overall, the two groups did not differ in response time, nor did they respond differently according to Fitts' Law. Both groups displayed a conventional trade-off between Target Size and average Movement Time. However, while movement errors for children with DCD/LD were minimal on the discrete task, they made significantly more errors on the cyclic task. This, together with faster endpoint velocities, suggests a reduced ability to use a control strategy that emphasizes the terminal control of accuracy. Taken together, the results suggest that children with DCD/LD rely more on feedback during movement execution and have difficulty switching to a feedforward or open-loop strategy.  相似文献   

15.
In this study, the authors examined the interplay between biomechanics and control strategies in the resolution of excess degrees of freedom at the joint level. Seven participants made aimed arm movements from 30 starting points and several starting postures to targets. Final arm postures for movements to a target exhibited substantial joint angle variation. Through regression modeling and by comparing observed final arm postures with biomechanically plausible postures, the authors identified 3 kinematic strategies: (a) Maintain deviations from the average angle at the starting point to the joint's final posture; (b) make torso rotations that are a fixed proportion of shoulder rotations; and (c) adopt a characteristic combination of 4 wrist-positioning approaches. The results demonstrated that kinematic strategies can account for substantial variance in final arm postures, if one takes into account 2 types of individual differences-those that arise inevitably from biomechanical constraints and those that reflect choices in movement strategy.  相似文献   

16.
In this study, the authors examined the interplay between biomechanics and control strategies in the resolution of excess degrees of freedom at the joint level. Seven participants made aimed arm movements from 30 starting points and several starting postures to targets. Final arm postures for movements to a target exhibited substantial joint angle variation. Through regression modeling and by comparing observed final arm postures with biomechanically plausible postures, the authors identified 3 kinematic strategies: (a) Maintain deviations from the average angle at the starting point to the joint's final posture; (b) make torso rotations that are a fixed proportion of shoulder rotations; and (c) adopt a characteristic combination of 4 wrist-positioning approaches. The results demonstrated that kinematic strategies can account for substantial variance in final arm postures, if one takes into account 2 types of individual differences—those that arise inevitably from biomechanical constraints and those that reflect choices in movement strategy.  相似文献   

17.
Accurate timing of limb displacement is crucial for effective motor control. The authors examined the effects of movement velocity, duration, direction, added mass, and auditory cueing on timing, spatial, and trajectory variability of single- and multijoint rhythmic movements. During single-joint movements, increased velocity decreased timing and spatial variability, whereas increased movement duration increased timing variability but decreased spatial variability. For multijoint movements, regardless of condition, increasing velocity decreased joint timing, spatial, and trajectory variability, but all hand variabilities were unaffected by velocity, duration, load, or direction. Timing, spatial, and trajectory variability was greater at the shoulder compared with the elbow and minimal at the hand, supporting the notion that reaching movements are planned in hand space as opposed to joint space.  相似文献   

18.
Individuals are assumed to plan reach-and-grasp movements by using two separate processes. In 1 of the processes, extrinsic (direction, distance) object information is used in planning the movement of the arm that transports the hand to the target location (transport planning); whereas in the other, intrinsic (shape) object information is used in planning the preshaping of the hand and the grasping of the target object (manipulation planning). In 2 experiments, the authors used primes to provide information to participants (N = 5, Experiment 1; N = 6, Experiment 2) about extrinsic and intrinsic object properties. The validity of the prime information was systematically varied. The primes were succeeded by a cue, which always correctly identified the location and shape of the target object. Reaction times were recorded. Four models of transport and manipulation planning were tested. The only model that was consistent with the data was 1 in which arm transport and object manipulation planning were postulated to be independent processes that operate partially in parallel. The authors suggest that the processes involved in motor planning before execution are primarily concerned with the geometric aspects of the upcoming movement but not with the temporal details of its execution.  相似文献   

19.
Zhang  Ying  Zhang  Jian  Forest  Jacques  Chen  Zhihua 《Motivation and emotion》2019,43(3):447-460

Following self-determination theory, this paper investigates the relations of employees’ perceptions of supervisors’ autonomy-supportive or controlling environments to their intrinsic or extrinsic work goals using both a field study and a computational dynamics model (Vancouver and Weinhardt in Org Res Methods 15(4):602–623, 2012), which is a recent and innovative technique. In Study 1, we did an empirical study with 128 employees over a half-year period and found that employees’ perceptions of supervisors’ autonomy-supportive environments satisfied employees’ basic psychological needs and promoted their intrinsic goals; controlling environments frustrated their basic needs and promoted their extrinsic goals. In Study 2, we used a system dynamics model to simulate the change in employees’ extrinsic goals, and the results showed that perceptions of supervisors’ autonomy-supportive environments related to the transformation of employees’ extrinsic goals. The study contributes by demonstrating that employees’ perception of supervisors’ environments could be a reason for employees’ different goal orientations, and it contributes by simulating the use of the dynamic process of goal transformation in research.

  相似文献   

20.
IntroductionRecently, kinematic analysis of the drinking task (DRINK) has been recommended to assess the quality of upper limb (UL) movement after stroke, but the accomplishment of this task may become difficult for poststroke patients with hand impairment. Therefore, it is necessary to study ADLs that involve a simpler interaction with a daily life target, such as the turning on a light task (LIGHT). As the knowledge of movement performed by healthy adults becomes essential to assess the quality of movement of poststroke patients, the main goal of this article was to compare the kinematic strategies used by healthy adults in LIGHT with those that are used in DRINK.Methods63 adults, aged 30 to 69 years old, drank water and turned on a light, using both ULs separately, while seated. The movements of both tasks were captured by a 3D motion capture system. End-point and joint kinematics of reaching and returning phases were analysed. A multifactorial analysis of variance with repeated measures was applied to the kinematic metrics, using age, sex, body mass index and dominance as main factors.ResultsMean and peak velocities, index of curvature, shoulder flexion and elbow extension were lower in LIGHT, which suggests that the real hand trajectory was smaller in this task. In LIGHT, reaching was less smooth and returning was smoother than DRINK. The instant of peak velocity was similar in both tasks. There was a minimal anterior trunk displacement in LIGHT, and a greater anterior trunk displacement in DRINK. Age and sex were the main factors which exerted effect on some of the kinematics, especially in LIGHT.ConclusionThe different target formats and hand contact in DRINK and LIGHT seem to be responsible for differences in velocity profile, efficiency, smoothness, joint angles and trunk displacement. Results suggest that the real hand trajectory was smaller in LIGHT and that interaction with the switch seems to be less demanding than with the glass. Accordingly, LIGHT could be a good option for the assessment of poststroke patients without grasping ability. Age and sex seem to be the main factors to be considered in future studies for a better match between healthy and poststroke adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号