首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tentacle withdrawal reflex of the snail Helix aspersa exhibits a complex combination of habituation and sensitization consistent with the dual-process theory of plasticity. Habituation, sensitization, or a combination of both were elicited by varying stimulation parameters and lesion condition. Analysis of response plasticity shows that the late phase of the response is selectively enhanced by sensitization, whereas all phases are decreased by habituation. Previous data have shown that tentacle withdrawal is mediated conjointly by parallel monosynaptic and polysynaptic pathways. The former mediates the early phase, whereas the latter mediates the late phase of the response. Plastic loci were identified by stimulating and recording at different points within the neural circuit, in combination with selective lesions. Results indicate that depression occurs at an upstream locus, before circuit divergence, and is therefore expressed in all pathways, whereas facilitation requires downstream facilitatory neurons and is selectively expressed in polysynaptic pathways. Differential expression of plasticity between pathways helps explain the behavioral manifestation of depression and facilitation. A simple mathematical model is used to show how serial positioning of depression and facilitation can explain the kinetics of dual-process learning. These results illustrate how the position of cellular plasticity in the network affects behavioral change and how forms of plasticity can interact to determine the kinetics of the net changes.  相似文献   

2.
Intrinsic sensitization is a form of behavioral facilitation that is distinct from the extrinsic sensitization normally studied. To examine whether intrinsic and extrinsic sensitization are mediated by different physiological processes, the effects of 5,7-dihydroxytryptamine-induced serotonin (5-HT) depletion on intrinsic sensitization of the leech whole-body shortening response were observed. Previous experiments have shown that 5-HT depletion disrupts dishabituation and extrinsic sensitization of this behavior in the leech. Intrinsic sensitization was observed in preparations from both control and 5-HT-depleted animals, indicating that this form of behavioral facilitation was not affected by 5-HT depletion. The differences in the effects of 5-HT depletion on intrinsic versus extrinsic sensitization suggest that there are distinct neurophysiological processes mediating these two forms of behavioral facilitation. In addition, 5-HT depletion appeared to disrupt a putative extrinsic form of habituation of the shortening reflex. These data support the hypothesis that both intrinsic and extrinsic processes of neuromodulation mediate habituation and sensitization.  相似文献   

3.
Using the shortening reflex of the medicinal leech Hirudo medicinalis we examined stimulus generalization of habituation learning. Preparations received mechanosensory stimulus at two positions on the leech body wall, one site used to carry out habituation training and a second novel site to test for generalization of habituation. After training, the specific mechanosensory neurons activated by each stimulus were assessed using intracellular recordings. As expected, the closer the two sites were to each other, the greater the degree of generalization of habituation at the novel site and the more sensory cells were shared. However, a form of behavioral facilitation was observed at the trained site that resembled behavioral sensitization, but differed from the standard sensitization process in several respects. (1) Facilitation was induced by stimulation of the novel site before habituation training at the trained site, although the stimulus intensity at the novel site was equivalent to the training stimuli and was not the strong, noxious stimuli that normally induce sensitization. (2) The magnitude of the facilitating effect was proportional to the proximity of the novel and trained stimulation sites. (3) Although behavior at the trained site was facilitated, behavior at the novel site was habituated, indicating that the induced behavioral facilitation did not generalize throughout the animal, as normally occurs during sensitization, but was limited to a single stimulus–response pathway.  相似文献   

4.
Freezing to a tone following auditory fear conditioning is commonly considered as a measure of the strength of the tone-shock association. The decrease in freezing on repeated nonreinforced tone presentation following conditioning, in turn, is attributed to the formation of an inhibitory association between tone and shock that leads to a suppression of the expression of fear. This study challenges these concepts for auditory fear conditioning in mice. We show that acquisition of conditioned fear by a few tone-shock pairings is accompanied by a nonassociative sensitization process. As a consequence, the freezing response of conditioned mice seems to be determined by both associative and nonassociative memory components. Our data suggest that the intensity of freezing as a function of footshock intensity is primarily determined by the nonassociative component, whereas the associative component is more or less categorical. We next demonstrate that the decrease in freezing on repeated nonreinforced tone presentation following conditioning shows fundamental properties of habituation. Thus, it might be regarded as a habituation-like process, which abolishes the influence of sensitization on the freezing response to the tone without affecting the expression of the associative memory component. Taken together, this study merges the dual-process theory of habituation with the concept of classical fear conditioning and demonstrates that sensitization and habituation as two nonassociative learning processes may critically determine the expression of conditioned fear in mice.  相似文献   

5.
Larvae of the hawkmoth, Manduca sexta, exhibit a defensive proleg withdrawal reflex in which deflection of mechanosensory hairs on the proleg tip (the planta) evokes retraction of the proleg. A previous behavioral study showed that this reflex habituates in response to repeated planta hair deflection and exhibits several other defining features of habituation. In a semi-intact preparation consisting of a proleg and its associated segmental ganglion, repeated deflection of a planta hair or electrical stimulation of its sensory neuron causes a neural correlate of habituation, manifested as a decrease in the number of action potentials evoked in the proleg motor nerve. Monosynaptic connections from planta hair sensory neurons to the principal planta retractor motoneuron exhibit several forms of activity-dependent plasticity. In the present study we recorded intracellularly from this motoneuron during repetitive electrical stimulation of a planta hair sensory neuron. The number of action potentials evoked in the motoneuron decreased significantly, representing a neural correlate of habituation. The motoneuron's resting membrane potential, input resistance. and spike threshold measured before and after repetitive stimulation did not differ between the stimulated group and a control group. Furthermore, the amplitude of the monosynaptic excitatory postsynaptic potential, as well as the magnitude of paired-pulse facilitation, evoked in the motoneuron by the sensory neuron did not change after repetitive stimulation. These results suggest that depression at the sensorimotor synapse does not contribute to reflex habituation. Rather, other mechanisms in the ganglion of the stimulated segment, such as changes in polysynaptic reflex pathways, appear to be responsible.  相似文献   

6.
The marine snail, Aplysia californica, is a valuable model system for cell biological studies of learning and memory. Aplysia exhibits a reflexive withdrawal of its gill and siphon in response to weak or moderate tactile stimulation of its skin. Repeated tactile stimulation causes this defensive withdrawal reflex to habituate. Both short-term habituation, lasting <30 min, and long-term habituation, which can last >24 h, have been reported in Aplysia. Habituation of the withdrawal reflex correlates with, and is in part due to, depression of transmission at the monosynaptic connection between mechanoreceptive sensory neurons and motor neurons within the abdominal ganglion. Habituation-related short-term depression of the sensorimotor synapse appears to be due exclusively to presynaptic changes. However, changes within the sensory neuron, by themselves, do not account for more persistent depression of the sensorimotor synapse. Recent behavioral work suggests that long-term habituation in Aplysia critically involves postsynaptic processes, specifically, activation of AMPA- and NMDA-type receptors. In addition, long-term habituation requires activity of protein phosphatases, including protein phosphatases 1, 2A, and 2B, as well as activity of voltage-dependent Ca2+ channels. Cellular work has succeeded in demonstrating long-term, homosynaptic depression (LTD) of the sensorimotor synapse in dissociated cell culture and, more recently, LTD of the glutamate response of isolated motor neurons in culture (“hemisynaptic” LTD). These in vitro forms of LTD have mechanistic parallels to long-term habituation. In particular, homosynaptic LTD of the sensorimotor synapse requires elevated intracellular Ca2+ within the motor neuron, and hemisynaptic LTD requires activity of AMPA- and NMDA-type receptors. In addition, activation of group I and II metabotropic glutamate receptors (mGluRs) can induce hemisynaptic LTD. The demonstration of LTD in vitro opens up a promising new avenue for attempts to relate long-term habituation to cellular changes within the nervous system of Aplysia.  相似文献   

7.
Naive Drosophila larvae show vigorous chemotaxis toward many odorants including ethyl acetate (EA). Chemotaxis toward EA is substantially reduced after a 5-min pre-exposure to the odorant and recovers with a half-time of ~20 min. An analogous behavioral decrement can be induced without odorant-receptor activation through channelrhodopsin-based, direct photoexcitation of odorant sensory neurons (OSNs). The neural mechanism of short-term habituation (STH) requires the (1) rutabaga adenylate cyclase; (2) transmitter release from predominantly GABAergic local interneurons (LNs); (3) GABA-A receptor function in projection neurons (PNs) that receive excitatory inputs from OSNs; and (4) NMDA-receptor function in PNs. These features of STH cannot be explained by simple sensory adaptation and, instead, point to plasticity of olfactory synapses in the antennal lobe as the underlying mechanism. Our observations suggest a model in which NMDAR-dependent depression of the OSN-PN synapse and/or NMDAR-dependent facilitation of inhibitory transmission from LNs to PNs contributes substantially to short-term habituation.  相似文献   

8.
Continuous presentation of an olfactory stimulus causes a decrement of the chemotaxis response in the nematode Caenorhabditis elegans. However, the differences between the learning process of habituation (a readily reversible decrease in behavioral response) and other types of olfactory plasticity such as adaptation (a decrement in response due to sensory fatigue, which cannot be dishabituated) have not been addressed. The volatile odorant diacetyl (DA) was used within a single paradigm to assess the distinct processes of olfactory adaptation and habituation. Preexposing and testing worms to 100% DA vapors caused a chemotaxis decrement that was not reversible despite the presentation of potentially dishabituating stimuli. This DA adaptation was abolished in worms with an odr-10 mutation (encoding a high-affinity DA receptor on the AWA neuron), even though naive chemotaxis remained unaffected. Conversely, DA adaptation remained intact in odr-1 mutants (defective in AWC neuron-mediated olfactory behavior), even though naive chemotaxis to DA decreased. Surprisingly, exposure to vapors of intermediate concentrations of DA (0.01% and 25%) did not cause worms to exhibit any response decrement. In contrast to preexposure to high DA concentrations, preexposure to low DA concentrations (0.001%) produced habituation of the chemotaxis response (a dishabituating stimulus could reverse the response decrement back to baseline levels). The distinct behavioral effects produced by DA preexposure highlight a concentration-dependent dissociation between two decremental olfactory processes: adaptation at high DA concentrations versus habituation at low DA concentrations.  相似文献   

9.
Many studies of the neural mechanisms of learning have focused on habituation, a simple form of learning in which a response decrements with repeated stimulation. In the siphon-elicited siphon withdrawal reflex (S-SWR) of the marine mollusk Aplysia, the prevailing view is that homosynaptic depression of primary sensory afferents underlies short-term habituation. Here we examined whether this mechanism is also utilized in habituation of the tail-elicited siphon withdrawal reflex (T-SWR), which is triggered by an independent, polysynaptic afferent pathway that converges onto the same siphon motor neurons (MNs). By using semi-intact preparations in which tail and/or siphon input to siphon MNs could be measured, we found that repeated tail stimuli administered in the presence of a reversible conduction block of the nerves downstream of the tail sensory neurons (SNs) completely abolished the induction of habituation. Subsequent retraining revealed no evidence of savings, indicating that the tail SNs and their immediate interneuronal targets are not the locus of plasticity underlying T-SWR habituation. The networks closely associated with the siphon MNs are modulated by cholinergic inhibition. We next examined the effects of network disinhibition on S-SWR and T-SWR habituation using an Ach receptor antagonist d-tubocurarine. We found that the resulting network disinhibition disrupted T-SWR, but not S-SWR, habituation. Indeed, repeated tail stimulation in the presence of d-tubocurarine resulted in an initial enhancement in responding. Lastly, we tested whether habituation of T-SWR generalized to S-SWR and found that it did not. Collectively, these data indicate that (1) unlike S-SWR, habituation of T-SWR does not involve homosynaptic depression of SNs; and (2) the sensitivity of T-SWR habituation to network disinhibition is consistent with an interneuronal plasticity mechanism that is unique to the T-SWR circuit, since it does not alter S-SWR.  相似文献   

10.
Although the nonassociative form of learning, habituation, is often described as the simplest form of learning, remarkably little is known about the cellular processes underlying its behavioral expression. Here, we review research on habituation in the nematode Caenorhabditis elegans that addresses habituation at behavioral, neural circuit, and genetic levels. This work highlights the need to understand the dynamics of a behavior before attempting to determine its underlying mechanism. In many cases knowing the characteristics of a behavior can direct or guide a search for underlying cellular mechanisms. We have highlighted the importance of interstimulus interval (ISI) in both short- and long-term habituation and suggested that different cellular mechanisms might underlie habituation at different ISIs. Like other organisms, C. elegans shows both accumulation of habituation with repeated training blocks and long-term retention of spaced or distributed training, but not for massed training. Exposure to heat shock during the interblock intervals eliminates the long-term memory for habituation but not the accumulation of short-term habituation over blocks of training. Analyses using laser ablation of identified neurons, and of identified mutants have shown that there are multiple sites of plasticity for the response and that glutamate plays a role in long-term retention of habituation training.  相似文献   

11.
Two experiments were conducted to test a dual-process theory of infants' performance on visual habituation-dishabituation tasks. The findings demonstrate that (a) infant habituation functions are often nonmonotonic, with fixation increasing before the eventual response waning; (b) this initial increment in responding is related to stimulus "complexity"; (c) response to novelty is enhanced by increasing the "complexity" of the novelty-test stimulus; and (d) dishabituation, followed by decay, occurs for familiarized patterns when retested after the introduction of a "complex" stimulus, but not after introduction of a "simple" stimulus. Following P. Groves and R. Thompson (1970, Psychological Review, 77, 419-450) we propose that infant visual attention to repeated presentations of a stimulus involves two processes, habituation and sensitization.  相似文献   

12.
The endocannabinoid CB(1) receptor has been implicated in the inhibitory control of learning and memory. In the present experiment, we compared the behavioral response of CB(1) receptor knockout mice (CB(1)R(-/-)) with animals administered CB(1) receptor antagonist/inverse agonist SR141716A (rimonabant; 3 mg/kg IP, 30 min pre-trial) in terms of acquisition and retention of a habituation task and changes in cerebral monoamines. The results can be summarized as follows: (i) the acute and chronic invalidation of the CB(1) receptor resulted in an increase of behavioral habituation during the first exposure to an open field, indicative of enhanced acquisition of the task; (ii) CB(1)R(-/-) mice, but not rimonabant-treated animals, showed enhanced retention of the habituation task when re-tested 48 h and 1 week subsequent to the first exposure to the open field, respectively; (iii) the facilitation of retention of the habituation task in CB(1)R(-/-) mice was accompanied by a selective and site-specific increase in serotonin activity in hippocampus; and (iv) rimonabant-treated animals displayed 'antidepressant-like' neurochemical alterations of cerebral monoamines, that is, most parameters of monoaminergic activity were increased especially in dorsal striatum and hippocampus. Taken together, the present findings demonstrate that the genetic disruption of the CB(1) receptor gene can cause an improvement of behavioral habituation, which is considered to represent a form of 'non-associative' learning. Furthermore, our data support the assumption of a rimonabant-sensitive cannabinoid receptive site that is different from the 'classical' CB(1) receptor and which, under physiological conditions, might be involved in the inhibitory control of the acquisition but not retention of non-associative learning tasks.  相似文献   

13.
The phenomenon of habituation may be interpreted as a process that has evolved for filtering out iterative stimuli of little present relevance. That habituation is seen in aneural as well as neural organisms throughout phylogeny with remarkably similar characteristics suggests that its role is an important one in animal survival. If habituation is to be viewed as a process to filter out iterative stimuli that have no significant consequences, then how is sensitization to be viewed? One way of viewing these two behavioral changes, i.e. habituation and sensitization, is that they are homeostatic processes which optimize an organism’s likelihood of detecting and assessing the significance of a stimulus in a new iterative series or a change in it. If one views the level of initial responsiveness to a new stimulus as a function of an organism’s threshold just prior to stimulus occurrence, then “high responders” (i.e. those who initially react more strongly) are assumed to have a lower threshold for detecting and assessing the significance of this stimulus than are the “low responders” (i.e. those who initially react more weakly). Thus, high-responders would initially receive more sensory input and progressively decrease their responsiveness to a non-threatening stimulus (habituation). Likewise, initial low-responders would receive less sensory input followed by a decreased threshold and an increased response to the next stimulus occurrence (sensitization). The level of responsiveness achieved in both habituaters and sensitizers, as an asymptote is approached, is a balance between being too sensitive to an unimportant stimulus (and possibly missing other significant stimuli) and being too insensitive, and missing a change in the relevance of the present stimulus. These response changes can be taken as indices of the organism’s mechanisms for achieving an appropriate threshold level to an iterative stimulus in order to accurately assess its present significance and then eventually to asymptote at an optimal stable response level. This approach toward an asymptote is a behavioral homeostatic process that reflects the accumulated significance of the iterative stimulus at each occurrence. The purpose of adding “behavioral” to the term “homeostasis” is to extend the usual meaning of the concept from primarily internal processes to also include (a) iterative external stimulation, (b) the organism’s initial threshold to the initial stimulus as well as (c) the behavior which results from it. Since we are discussing organisms that range from intact, single-celled protozoa to intact mammals, as well as surgically simplified preparations, the termsstimulus, response andbehavior will be used broadly. While other investigators have focused on specific cellular mechanisms underlying habituation and sensitization in a given organism, this paper focuses on the adaptive significance of these two behavioral processes viewed across phylogeny.  相似文献   

14.
The aggressive response of male bullfrogs (Rana catesbeiana) habituates with repeated broadcasts of acoustic stimuli simulating a new territorial neighbor. The effects of stimulus repetition rate and stimulus intensity on bullfrog aggressive responses were tested in a field experiment designed to test the assumptions of a dual-process theory of habituation. Synthetic advertisement calls were broadcast at 2 repetition rates and 2 intensities in a factorial design. Bullfrogs were more aggressive at the higher stimulus intensity at both repetition rates. Aggressive responses habituated more slowly at the higher stimulus intensity and slower repetition rate compared with other treatments. Several biotic and abiotic factors had small or negligible effects on aggressive responses. Although consistent with the operation of 2 opposing processes, habituation and sensitization, the data provide only partial support for the assumptions of dual-process theory.  相似文献   

15.
A recent phylogenetic analysis of two learning-related neuromodulatory traits in mechanosensory neurons of species related to the marine molluskAplysia californicaidentified one species,Dolabrifera dolabrifera,which lacked both neuromodulatory traits. Since these traits are thought to contribute importantly to certain forms of learning and memory in the defensive withdrawal reflexes ofAplysia,in the present study, I tested the prediction that facilitatory nonassociative learning would be reduced or absent inDolabrifera.I tested the tail-mantle withdrawal reflex inDolabriferaand size-matchedAplysiafor three forms of nonassociative learning and memory: dishabituation and short- and long-term sensitization. I found that the same protocols that produced significant dishabituation, short-term sensitization, and long-term sensitization inAplysiafailed in all three cases to produce significant learning inDolabrifera.Thus, the prediction from the prior mechanistic analysis is confirmed: Dishabituation and short- and long-term sensitization are significantly reduced and perhaps abolished inDolabrifera.Although not conclusive, this phylogenetic correlation between the absence of behavioral changes and the absence of neural mechanisms thought to underlie the behavioral changes gives support to the contemporary neuromodulatory model of dishabituation and sensitization inAplysia.Furthermore, these results raise the possibility that evolutionary alteration of two specific neuromodulatory mechanisms may have directly contributed to evolutionary change in behavioral plasticity.  相似文献   

16.
Whereas short-term plasticity involves covalent modifications that are generally restricted to either presynaptic or postsynaptic structures, long-term plasticity involves the growth of new synapses, which by its nature involves both pre- and postsynaptic alterations. In addition, an intermediate-term stage of plasticity has been identified that might form a bridge between short- and long-term plasticity. Consistent with that idea, although short-term term behavioral sensitization in Aplysia involves presynaptic mechanisms, intermediate-term sensitization involves both pre- and postsynaptic mechanisms. However, it has not been known whether that is also true of facilitation in vitro, where a more detailed analysis of the mechanisms involved in the different stages and their interrelations is feasible. To address those questions, we have examined pre- and postsynaptic mechanisms of short- and intermediate-term facilitation at Aplysia sensory-motor neuron synapses in isolated cell culture. Whereas short-term facilitation by 1-min 5-HT involves presynaptic PKA and CamKII, intermediate-term facilitation by 10-min 5-HT involves presynaptic PKC and postsynaptic Ca(2+) and CamKII, as well as both pre- and postsynaptic protein synthesis. These results support the idea that the intermediate-term stage is the first to involve both pre- and postsynaptic molecular mechanisms, which could in turn serve as some of the initial steps in a cascade leading to synaptic growth during long-term plasticity.  相似文献   

17.
The startle response evoked by repeated presentation of a loud acoustic stimulus is regulated by the independent processes of sensitization and habituation. While schizophrenia is associated with information processing impairments, there is conflicting evidence regarding the existence of habituation deficits in schizophrenic patients. Recent clinical evidence, however, indicates that patients with schizophrenia display exaggerated startle sensitization and diminished habituation. Given the linkage between dopaminergic abnormalities and schizophrenia, the goal of the present investigation was to examine the effect of deleting D1 and D2-like dopamine receptors on sensitization and habituation of the acoustic startle reflex in mice. For these experiments, the acoustic startle reflex was assessed in dopamine D1, D2, and D3 receptor wild-type (WT) and knockout (KO) mice on a C57BL/6J background, using a methodology that can measure both sensitization and habituation. Mice lacking the D1 receptor gene displayed enhanced sensitization, along with a decrease in the amount of habituation that occurs in response to repetitive presentations of a startling stimulus. Conversely, the loss of the dopamine D2 or D3 receptor gene produced a sensitization deficit and a significant increase in habituation. The behavioral phenotype exhibited by D1 receptor KO mice is clearly distinct from that of the D2 and D3 receptor KO mice. The findings in D1 receptor KO mice are reminiscent of the abnormalities observed in schizophrenic patients tested in comparable startle paradigms, and indicate that D1 agonists may possess therapeutic efficacy against the information processing deficits associated with schizophrenia.  相似文献   

18.
Abstract.— Two experiments are described in which short-term "habituation" of the auditory evoked response (AER) was examined using discrete trains of click stimuli and averaging across trains. In the first study, the stimuli consisted of randomly interspersed trains of regular clicks, at 3 or 10 sec interstimulus interval (ISI). In the second study, the ISIs were also short or long but were irregular varying between 2.4 and 3.6 sec in the former case and 6 to 12 sec in the latter. The N1-P2 component of the AER diminished within the 3 sec trains especially for the regular stimulation; no such development occurred with the longer ISI. The total voltage in the background EEG and the reaction-times to the stimuli showed essentially similar changes. The possible mechanisms governing the response decrement are discussed and it is concluded that the data may be interpreted in terms of the Groves and Thompson dual-process theory of habituation.  相似文献   

19.
Habituation and the human evoked potential   总被引:3,自引:0,他引:3  
Habituation of human scalp-recorded cerebral evoked potentials was studied in response to auditory and visual repetitive stimuli of different intensities. Changes in magnitudes of evoked potentials with stimulus repetition were examined according to the parametric characteristics of habituation, generalization, and dishabituation. In addition, tests of the predictions of two theories of habituation were made regarding the degree and direction of intensity generalization of habituation. Both auditory and visual evoked potentials exhibited decrements in response magnitudes across the repetitive stimuli consistent with the parametric criteria of habituation. Early evoked potential peak components showed a pattern of intensity generalization of habituation consistent with the predictions of the dual-process theory of habituation. Intensity generalization of late evoked potential peak components occurred in a manner more consistent with the predictions of the stimulus comparator theory of habituation. These results provide further evidence that evoked potentials can be used as electrophysiological indexes of plasticity in humans.  相似文献   

20.
中枢N-甲基-D-天冬氨酸受体在应激所致行为改变中的作用   总被引:3,自引:0,他引:3  
应激所致行为效应的脑机制研究是目前生理心理学研究的热点领域。近年来,对于参与应激所致行为效应的神经递质研究从5-HT、多巴胺和去甲肾上腺素的范畴,逐渐发展到关注脑内含量最为丰富的谷氨酸能神经元所产生的兴奋性递质,包括谷氨酸、天冬氨酸及其相应受体NMDAR可能在应激性行为效应的中枢机制中的作用。近十年来的研究表明,中枢NMDAR是学习记忆的关键物质,在兴奋性突触传递、突触可塑性和脑发育过程中扮演重要的角色。不同类型的应激能导致动物的与行为密切相关脑区如杏仁核,海马的兴奋性氨基酸及NMDAR数量增多,活性增高。突触间隙增多的兴奋性氨基酸与NMDAR结合后,通过激活NMDAR促进糖皮质激素的相关性释放,共同产生的兴奋毒性作用引起上述脑区的神经元细胞缺失和变性;或干扰其他中枢神经递质在动物行为的脑内奖赏机制中的正常功能;或通过持续激活NMDAR,导致细胞内Ca2+超载,损害其信号传导途径下游的蛋白激酶级联反应,使其底物蛋白的磷酸化或去磷酸化作用发生改变,影响突触可塑性和神经细胞间的信号传递,导致动物出现相应的行为障碍。应激前给动物的上述脑区注射NMDAR阻滞剂,可以减轻动物的应激性焦虑和抑郁行为。而NMDAR依赖性LTP下游途径的新信号分子,神经颗粒素,参与了脑内多种蛋白信号传导,可能是应激性行为效应的另一重要中枢机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号