首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 3 experiments, the authors investigated and described how individuals control manual interceptive movements to slowly moving targets. Participants (N = 8 in each experiment) used a computer mouse and a graphics tablet assembly to manually intercept targets moving across a computer screen toward a marked target zone. They moved the cursor so that it would arrive in the target zone simultaneously with the target. In Experiment 1, there was a range of target velocities, including some very slow targets. In Experiment 2, there were 2 movement distance conditions. Participants moved the cursor either the same distance as the target or twice as far. For both experiments, hand speed was found to be related to target speed, even for the very slowly moving targets and when the target-to-cursor distance ratios were altered, suggesting that participants may have used a strategy similar to tracking. To test that notion, in Experiment 3, the authors added a tracking task in which the participants tracked the target cursor into the target zone. Longer time was spent planning the interception movements; however, there was a longer time in deceleration for the tracking movements, suggesting that more visually guided trajectory updates were made in that condition. Thus, although participants scaled their interception movements to the cursor speed, they were using a different strategy than they used in tracking. It is proposed that during target interception, anticipatory mechanisms are used rather than the visual feedback mechanism used when tracking and when pointing to stationary targets.  相似文献   

2.
The experiments investigated how two adult captive chimpanzees learned to navigate in an automated interception task. They had to capture a visual target that moved predictably on a touch monitor. The aim of the study was to determine the learning stages that led to an efficient strategy of intercepting the target. The chimpanzees had prior training in moving a finger on a touch monitor and were exposed to the interception task without any explicit training. With a finger the subject could move a small "ball" at any speed on the screen toward a visual target that moved at a fixed speed either back and forth in a linear path or around the edge of the screen in a rectangular pattern. Initial ball and target locations varied from trial to trial. The subjects received a small fruit reinforcement when they hit the target with the ball. The speed of target movement was increased across training stages up to 38 cm/s. Learning progressed from merely chasing the target to intercepting the target by moving the ball to a point on the screen that coincided with arrival of the target at that point. Performance improvement consisted of reduction in redundancy of the movement path and reduction in the time to target interception. Analysis of the finger's movement path showed that the subjects anticipated the target's movement even before it began to move. Thus, the subjects learned to use the target's initial resting location at trial onset as a predictive signal for where the target would later be when it began moving. During probe trials, where the target unpredictably remained stationary throughout the trial, the subjects first moved the ball in anticipation of expected target movement and then corrected the movement to steer the ball to the resting target. Anticipatory ball movement in probe trials with novel ball and target locations (tested for one subject) showed generalized interception beyond the trained ball and target locations. The experiments illustrate in a laboratory setting the development of a highly complex and adaptive motor performance that resembles navigational skills seen in natural settings where predators intercept the path of moving prey. Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   

3.
Two experiments examined how 10- and 12-year-old children and adults intercept moving gaps while bicycling in an immersive virtual environment. Participants rode an actual bicycle along a virtual roadway. At 12 test intersections, participants attempted to pass through a gap between 2 moving, car-sized blocks without stopping. The blocks were timed such that it was sometimes necessary for participants to adjust their speed in order to pass through the gap. We manipulated available visual information by presenting the target blocks in isolation in Experiment 1 and in streams of blocks in Experiment 2. In both experiments, adults had more time to spare than did children. Both groups had more time to spare when they were required to slow down than when they were required to speed up. Participants' behavior revealed a multistage interception strategy that cannot be explained by the use of a monotonic control law such as the constant bearing angle strategy. The General Discussion section focuses on possible sources of changes in perception-action coupling over development and on task-specific constraints that could underlie the observed interception strategy.  相似文献   

4.
Three untested assumptions of the impulse-variability model were examined in two experiments utilizing rapid, uni-planar limb movements. Experiment 1 varied movement distance (A) and movement time (MT) in a rapid-timing paradigm where the subject moved a lever through a certain distance in a certain time. Experiment 2 varied A in a reversal response where the S made a rapid elbow flexion and extension in a given MT. Displacement recordings were made on every trial. KR (knowledge of results) about MT was given after every trial. The results can be summarized as follows: (a) As predicted by the model, variations in impulse size and velocity were directly related to the impulses size; (b) There was no correlation between the accelerative and decelerative impulse durations recorded during the reversal response supporting the notion that the impulses might be independent; (c) Negative correlations (–.20 to –.50) were demonstrated between peak acceleration and impulse duration for both experiments, counter to the predictions of the model; and (d) Counter to the predictions of the model, timing error (VEt) increased as A decreased for rapid-timing responses. When the correlational results are taken into account, the model has the capacity to account for curvilinear relationships between relative timing error and movement speed. Overall, the results suggest that the impulse variability model requires some restructuring before it can be considered a viable model for the control of rapid limb movements.  相似文献   

5.
The current study investigated from how large a region around their current point of gaze viewers can take in information when searching for objects in real-world scenes. Visual span size was estimated using the gaze-contingent moving window paradigm. Experiment 1 featured window radii measuring 1, 3, 4, 4.7, 5.4, and 6.1°. Experiment 2 featured six window radii measuring between 5 and 10°. Each scene occupied a 24.8 × 18.6° field of view. Inside the moving window, the scene was presented in high resolution. Outside the window, the scene image was low-pass filtered to impede the parsing of the scene into constituent objects. Visual span was defined as the window size at which object search times became indistinguishable from search times in the no-window control condition; this occurred with windows measuring 8° and larger. Notably, as long as central vision was fully available (window radii ≥ 5°), the distance traversed by the eyes through the scene to the search target was comparable to baseline performance. However, to move their eyes to the target, viewers made shorter saccades, requiring more fixations to cover the same image space, and thus more time. Moreover, a gaze-data based decomposition of search time revealed disruptions in specific subprocesses of search. In addition, nonlinear mixed models analyses demonstrated reliable individual differences in visual span size and parameters of the search time function.  相似文献   

6.
Three untested assumptions of the impulse-variability model were examined in two experiments utilizing rapid, uni-planar limb movements. Experiment 1 varied movement distance (A) and movement time (MT) in a rapid-timing paradigm where the subject moved a lever through a certain distance in a certain time. Experiment 2 varied A in a reversal response where the S made a rapid elbow flexion and extension in a given MT. Displacement recordings were made on every trial. KR (knowledge of results) about MT was given after every trial. The results can be summarized as follows: (a) As predicted by the model, variations in impulse size and velocity were directly related to the impulses size; (b) There was no correlation between the accelerative and decelerative impulse durations recorded during the reversal response supporting the notion that the impulses might be independent; (c) Negative correlations (-.20 to -.50) were demonstrated between peak acceleration and impulse duration for both experiments, counter to the predictions of the model; and (d) Counter to the predictions of the model, timing error (VEt) increased as A decreased for rapid-timing responses. When the correlational results are taken into account, the model has the capacity to account for curvilinear relationships between relative timing error and movement speed. Overall, the results suggest that the impulse variability model requires some restructuring before it can be considered a viable model for the control of rapid limb movements.  相似文献   

7.
Target velocity effects on manual interception kinematics   总被引:3,自引:0,他引:3  
Participants generated manual interception movements toward a target cursor that moved across a computer screen. The target reached its peak velocity either during the first third, at the midpoint, or during the last third of the movement. In Experiment 1 the view of the target was available for either the first 316, 633, 950, or 1267 ms, after which it disappeared. Results showed that for all viewing conditions, the timing of the interception velocity was related to the temporal properties of the target's trajectory. In Experiment 2, when the portion of the target trajectory that was viewed was reversed (such that participants did not see the first 316, 633, 950, or 1267 ms of the trajectory, but instead saw only the later portions of the trajectory), there was no clear relationship between the target trajectory and the timing of the aiming trajectory. These results suggest that participants use visual information early in the target's trajectory to form a representation of the target motion that is used to facilitate manual interception.  相似文献   

8.
晏碧华  游旭群 《心理学报》2015,47(2):212-223
相对到达时间任务(RAT)是判断两个运动客体哪个先到达指定目标, 可用来评估个体动态空间能力。采用RAT任务对飞行员与普通被试进行对照研究, 寻求发现两组在运动客体特征和视觉空间运动特征及其相互关系上的处理差异。设计了3个实验分别考察客体颜色、客体大小、运动方向、速率大小、视线方向以及背景特征对判断的影响。结果显示:(1)客体颜色不影响运动客体的相对时间判断, 客体大小、运动方向、速率大小、视线方向以及背景特征影响判断; (2)控制组对显示屏上从左到右的运动客体的相对时间判断好于从右到左任务, 大速率任务判断更好, 对大客体快速行驶而小客体低速行驶时的相对到达时间更易区分, 且与两眼视线方向不一致的运动方向会使控制组判断更难, 运动背景中的目标线特征改变使控制组判断绩效降低; (3)和控制组比, 飞行员反应快正确率高, 其快速判断优势集中体现在从右到左运动以及小速率任务上, 且在不同运动方向和不同速率上的反应时均无差异, 飞行员的处理优势还表现在不受客体大小、视线方向改变和目标线特征改变的影响。结论:飞行员能在变化的空间中准确处理相对速度、相对距离、相对时间等运动信息, 能分离客体大小、背景、运动方向等因素对相对到达时间判断的影响, 在运动空间中飞行员具有较高场独立性认知特征和动态空间处理能力。  相似文献   

9.
In three visual search experiments, the processes involved in the efficient detection of motion-form conjunction targets were investigated. Experiment 1 was designed to estimate the relative contributions of stationary and moving nontargets to the search rate. Search rates were primarily determined by the number of moving nontargets; stationary nontargets sharing the target form also exerted a significant effect, but this was only about half as strong as that of moving nontargets; stationary nontargets not sharing the target form had little influence. In Experiments 2 and 3, the effects of display factors influencing the visual (form) quality of moving items (movement speed and item size) were examined. Increasing the speed of the moving items (> 1.5 degrees/sec) facilitated target detection when the task required segregation of the moving from the stationary items. When no segregation was necessary, increasing the movement speed impaired performance: With large display items, motion speed had little effect on target detection, but with small items, search efficiency declined when items moved faster than 1.5 degrees/sec. This pattern indicates that moving nontargets exert a strong effect on the search rate (Experiment 1) because of the loss of visual quality for moving items above a certain movement speed. A parallel-continuous processing account of motion-form conjunction search is proposed, which combines aspects of Guided Search (Wolfe, 1994) and attentional engagement theory (Duncan & Humphreys, 1989).  相似文献   

10.
Vernat, J.‐P. & Gordon, M.S. (2011). Indirect interception actions by blind and sighted perceivers: The role of modality and tau. Scandinavian Journal of Psychology 52, 83–92. Acoustic and visual interceptive actions were tested in this research by comparing the performance of blind, blind‐folded, and sighted individuals. An indirect interception method was employed in which the participant had to roll an intercepting ball towards a moving target on a perpendicular track. The interception task used conditions that varied the speed, rolling distance, and target size/intensity. While performance was highly consistent and accurate for visual participants in this research, the blind and blind‐folded participants demonstrated much more performance variability in response to changes in speed and distance. Manipulation of target size and intensity did not affect judgments, however performance tended to be more accurate at shorter distances and with faster target speeds. Results from this research are discussed in terms of their implications for tau in acoustic interception, and the use of spatial and temporal cues for guiding interceptive actions.  相似文献   

11.
The authors investigated the time course of reprogramming of the temporal dimension of motor acts in a task requiring interception of a moving target. The target moved at a constant velocity on a monitor screen; in part of the trials, target velocity was unexpectedly increased or decreased. Those modifications were produced at different moments during target displacement, leaving periods of time from 100 to 800 ms for movement timing correction. The authors assessed the effects of probability of target velocity change (25% vs. 50%), uncertainty about direction of velocity change (unidirectional vs. bidirectional), and direction of velocity change (increase vs. decrease). Analysis of 24 participants' arm acceleration showed that fast adjustments took place between 100 and 200 ms after target velocity change similarly for all uncertainty conditions. Analysis of temporal error indicated that the combination of high probability of target velocity change and certainty on direction of target velocity change led to the most successful movement timing reprogramming. For the other experimental conditions, temporal accuracy was still poor when a period of 800 ms was available for correction. Movement reprogramming was a continuous process that was more efficient for target velocity increase than for target velocity decrease.  相似文献   

12.
The authors investigated the time course of reprogramming of the temporal dimension of motor acts in a task requiring interception of a moving target. The target moved at a constant velocity on a monitor screen; in part of the trials, target velocity was unexpectedly increased or decreased. Those modifications were produced at different moments during target displacement, leaving periods of time from 100 to 800 ms for movement timing correction. The authors assessed the effects of probability of target velocity change (25% vs. 50%), uncertainty about direction of velocity change (unidirectional vs. bidirectional), and direction of velocity change (increase vs. decrease). Analysis of 24 participants' arm acceleration showed that fast adjustments took place between 100 and 200 ms after target velocity change similarly for all uncertainty conditions. Analysis of temporal error indicated that the combination of high probability of target velocity change and certainty on direction of target velocity change led to the most successful movement timing reprogramming. For the other experimental conditions, temporal accuracy was still poor when a period of 800 ms was available for correction. Movement reprogramming was a continuous process that was more efficient for target velocity increase than for target velocity decrease.  相似文献   

13.
通过两项实验考察时空信息对拦截运动启动的影响: 实验一为知觉估计实验, 通过释放匀速小球模拟拦截过程; 实验二为特定拦截路线情景下的拦截行为实验, 即固定手的拦截方向, 但容许拦截速度自由控制。结果发现, 拦截行为的启动基于综合信息, 在所拦截物体作慢速运动的情景下拦截行为启动偏早, 而在快速运动的情景下启动偏晚, 结果不支持单纯用tau理论解释启动行为。本研究对手的速度伴随效应提出了新的解释。  相似文献   

14.
唐日新  张智君  刘玉丽 《心理学报》2010,42(12):1109-1117
手的启动方向自由, 伸手拦截不同速度的运动小球。本研究通过考察手启动时的运动参数, 研究自由启动的情况下的信息利用和拦截策略, 并且考察了人的启动模式。结果发现, 自由拦截时手的拦截区域相对固定, 在物体快速运动情景下启动晚, 而在慢速下启动早, 可能综合利用了接触时间和距离信息, 存在速度伴随效应, 手的拦截启动策略为启动有相对稳定的角度和加速度, 并不随物体运动速度和物体大小的改变而改变。  相似文献   

15.
When subjects are asked to determine where a fast-moving stimulus enters a window, they typically do not localize the stimulus at the edge, but at some later position within that window (Fröhlich effect). We report five experiments that explored this illusion. An attentional account is tested, assuming that the entrance of the stimulus in the window initiates a focus shift toward it. While this shift is under way, the stimulus moves into the window. Because the first phenomenal (i.e., explicitly reportable) representation of the stimulus will not be available before the end of the focus shift, the stimulus is perceived at some later position. In Experiment 1, we established the Fröhlich effect and showed that its size depends on stimulus parameters such as movement speed and movement direction. In Experiments 2 and 3, we examined the influence of eye movements and tested whether the effect changed when the stimuli were presented within a structural background or when they started from different eccentricities. In Experiments 4 and 5, specific predictions from the attentional model were tested: In Experiment 4 we showed that the processing of the moving stimulus benefits from a preceding peripheral cue indicating the starting position of the subsequent movement, which induces a preliminary focus shift to the position where the moving stimulus would appear. As a consequence the Fröhlich effect was reduced. Using a detection task in Experiment 5, we showed that feature information about the moving stimulus is lost when it falls into the critical interval of the attention shift. In conclusion, the present attentional account shows that selection mechanisms are not exclusively space based; rather, they can establish a spatial representation that is also used for perceptual judgment—that is, selection mechanisms can bespace establishing as well.  相似文献   

16.
According to Fitts (1954), movement time (MT) is a function of the combined effects of movement amplitude and target width (index of difficulty). Aiming movements with the same index of difficulty and MT may have different planning and control processes depending on the specific combination of movement amplitude and target size. Trajectories were evaluated for a broad range of amplitudes and target sizes. A three-dimensional motion recording system (WATSMART) monitored the position of a stylus during aiming movements. MT results replicated Fitts' Law. Analysis of the resultant velocity profiles indicated the following significant effects: As amplitude of movement increased, so did the time to peak resultant velocity; peak resultant velocity increased slightly with target size, and to a greater extent with increases in the amplitude of movement; the time after peak resultant velocity was a function of both amplitude and target size. Resultant velocity profiles were normalized in the time domain to look for scalar relation in the trajectory shape. This revealed that: the resultant velocity profiles were not symmetrical; the proportion of time spent prior to and after peak speed was sensitive to target size only, i.e. as target size decreased, the profiles became more skewed to the right, indicating a longer decelerative phase; for a given target size, a family of curves might be defined and scaled on movement amplitude. These results suggest that a generalized program (base trajectory representation) exists for a given target width and is parameterized or scaled according to the amplitude of movement.  相似文献   

17.
Two experiments were conducted to determine the spatial and temporal organization of the arm trajectory in human subjects as they pointed to single- and double-step target displacements. Subjects pointed either without (Experiment 1) or with (Experiment 2) vision of their moving hand throughout the trial. In both experiments, target perturbation occurring in double-step trials was clearly perceived by the subjects and was randomly introduced either at the onset or at peak velocity of hand movement. Regardless of whether or not visual reafference from the pointing hand was available, subjects corrected the trajectory of their moving hand to accommodate the double-step. Moreover, asymmetrical velocity profiles were observed for responses to both types of target, with or without vision of the moving hand. The acceleration phase was a fixed pattern independent of the type of step stimulation. However, a clear dissociation, both in the deceleration phase and accuracy of responses to double-step targets, emerged according to the timing of target perturbation. When targets were perturbed at the onset of hand movement, subjects modulated the deceleration phase of their response to compensate for 88 to 100% of the second target displacement. In contrast, when targets were perturbed at peak velocity of hand movement, subjects were unable to modulate the deceleration phase adequately and compensated for only 20 to 40% of the perturbation. These results suggest that motor error is dynamically evaluated during the acceleration phase of a movement toward a perturbed target, allowing amendments to the trajectory to be performed during the deceleration phase. This main corrective process appears to be basically independent of visual reafference from the moving hand.  相似文献   

18.
Two experiments were conducted to examine the role of vision in the execution of a movement sequence. Experiment 1 investigated whether individual components of a sequential movement are controlled together or separately. Participants executed a rapid aiming movement to two targets in sequence. A full vision condition was compared to a condition in which vision was eliminated while in contact with the first target. The size of the first target was constant, while the second target size was varied. Target size had an influence on movement time and peak velocity to the first target. Vision condition and target size did not affect the time spent on the first target. These results suggest that preparation of the second movement is completed before the first movement is terminated. Experiment 2 examined when this preparation occurred. A full vision condition was compared to a condition in which vision was occluded during the flight phase of the first movement. Movement initiation times were shorter when vision was continually available. Total movement time was reduced with vision in two-target condition, but not in a control one-target condition. The time spent on the first target was greater when vision was not available during the first movement component. The results indicate that vision prior to movement onset can be used to formulate a movement plan to both targets in the sequence [Fischman & Reeve (1992).  相似文献   

19.
The variable that affect motor programming time may be studied by changing the nature of the response and measuring the subsequent changes in reaction time (RT). One notion of motor programming suggests that aiming responses with reduced target size and/or increased target amplitude require more "complex" motor programs that require longer RTs. In a series of five experiments which movement time (MT) was experimentally varied target size neither influences RT when the movement amplitude was 2 or 30 cm nor when the target sizes differed by as much as a factor of 16:1. Increasing the movement amplitude from 15 to 30 cm also had no influence on RT. Movement time, however, did affect RT, with 200-msec movements having longer RTs than 120-msec movements. Target size and movement amplitude did not appear to be factors that influence programming time or program complexity.  相似文献   

20.
Two experiments examined on-line processing during the execution of reciprocal aiming movements. In Experiment 1, participants used a stylus to make movements between two targets of equal size. Three vision conditions were used: full vision, vision during flight and vision only on contact with the target. Participants had significantly longer movement times and spent more time in contact with the targets when vision was available only on contact with the target. Additionally, the proportion of time to peak velocity revealed that movement trajectories became more symmetric when vision was not available during flight. The data indicate that participants used vision not only to 'home-in' on the current target, but also to prepare subsequent movements. In Experiment 2, liquid crystal goggles provided a single visual sample every 40 ms of a 500 ms duty cycle. Of interest was how participants timed their reciprocal aiming to take advantage of these brief visual samples. Although across participants no particular portion of the movement trajectory was favored, individual performers did time their movements consistently with the onset and offset of vision. Once again, performance and kinematic data indicated that movement segments were not independent of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号