首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Increases in cyclic adenosine monophosphate (cAMP) are proposed to initiate learning in a wide variety of species. Here, we measure changes in cAMP in the olfactory bulb prior to, during, and following a classically conditioned odor preference trial in rat pups. Measurements were taken up to the point of maximal CREB phosphorylation in olfactory bulb mitral cells. Using both drug and natural unconditioned stimuli we found effective learning was associated with an increase in cAMP at the end of the conditioning trial, followed by a decrease 5 min later. This early timing of a transient cAMP increase occurred only when the odor was paired with an effective drug or natural unconditioned stimulus (US). The data support the hypothesis that the rate of adenylate cyclase activation is enhanced by pairing calcium and G-protein activation and that the timing of transient cAMP signaling is critical to the initiation of classical conditioning.  相似文献   

3.
In the present study we assess a new model for classical conditioning of odor preference learning in rat pups. In preference learning beta(1)-adrenoceptors activated by the locus coeruleus mediate the unconditioned stimulus, whereas olfactory nerve input mediates the conditioned stimulus, odor. Serotonin (5-HT) depletion prevents odor learning, with 5-HT(2A/2C) agonists correcting the deficit. Our new model proposes that the interaction of noradrenergic and serotonergic input with odor occurs in the mitral cells of the olfactory bulb through activation of cyclic adenosine monophosphate (cAMP). Here, using selective antibodies and immunofluorescence examined with confocal microscopy, we demonstrate that beta(1)-adrenoceptors and 5-HT(2A) receptors colocalize primarily on mitral cells. Using a cAMP assay and cAMP immunocytochemistry, we find that beta-adrenoceptor activation by isoproterenol, at learning-effective and higher doses, significantly increases bulbar cAMP, as does stroking. As predicted by our model, the cAMP increases are localized to mitral cells. 5-HT depletion of the olfactory bulb does not affect basal levels of cAMP but prevents isoproterenol-induced cAMP elevation. These results support the model. We suggest the mitral-cell cAMP cascade converges with a Ca(2+) pathway activated by odor to recruit CREB phosphorylation and memory-associated changes in the olfactory bulb. The dose-related increase in cAMP with isoproterenol implies a critical cAMP window because the highest dose of isoproterenol does not produce learning.  相似文献   

4.
An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in the neonate rat. Rat pups were given a single pairing of peppermint and 2 mg/kg isoproterenol, which produces a 24-h, but not a 48-h, peppermint preference in the 7-d-old rat pup. GluA1 PKA-dependent phosphorylation peaked 10 min after the 10-min training trial and returned to baseline within 90 min. At 24 h, GluA1 subunits did not change overall but were significantly increased in synaptoneurosomes, consistent with increased membrane insertion. Immunohistochemistry revealed a significant increase in GluA1 subunits in olfactory bulb glomeruli, the targets of olfactory nerve axons. Glomerular increases were seen at 3 and 24 h after odor exposure in trained pups, but not in control pups. GluA1 increases were not seen as early as 10 min after training and were no longer observed 48 h after training when odor preference is no longer expressed behaviorally. Thus, the pattern of increased GluA1 membrane expression closely follows the memory timeline. Further, blocking GluA1 insertion using an interference peptide derived from the carboxyl tail of the GluA1 subunit inhibited 24 h odor preference memory providing causative support for our hypothesis. PKA-mediated GluA1 phosphorylation and later GluA1 insertion could, conjointly, provide increased AMPA function to support both short-term and long-term appetitive memory.  相似文献   

5.
The present experiments examined the role of nitric oxide ( NO) in early associative olfactory learning in rats. A preference for peppermint odor was induced by pairing peppermint odor with tactile stimulation in Wistar rat pups, in either a repetitive training paradigm or in a one-trial olfactory learning paradigm. In a first experiment we studied the effect of nitric oxide synthase (NOs) inhibition on early olfactory learning in a repetitive paradigm, by systemic daily injections of NG-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg, i.p.). In order to exclude possible deleterous effects of repeated injections of l-NAME, we explored in a second experiment the effect of a single inhibitor injection in a one-trial olfactory learning paradigm. Inhibition of NOs was performed by either administration of l-NAME (50 mg/kg, i.p.), or 7-nitroindazole (7-NI, 30 mg/kg, i.p.), a more selective inhibitor of the neuronal NOs. We showed that both l-NAME and 7-NI impaired early olfactory associative learning when given before training but not before subsequent testing. Considering that NOs neurons are already widespread in the central nervous system (the olfactory bulb included) during the first postnatal week, the sites where NO inhibition may have acted to impair olfactory learning are discussed. The mechanisms of action of NO in relation with other neurotransmitters known to be necessary for olfactory conditioning in rat pups remain to be established. Impairment by NO synthesis inhibition of the acquisition during the first postnatal week of an olfactory conditioning, but not its recall, suggests a role for NO at synapses involved in that learning.  相似文献   

6.
Voltage-gated potassium channels (Kv) are critically involved in learning and memory processes. It is not known, however, whether the expression of the Kv1.1 subunit, constituting Kv1 channels, can be specifically regulated in brain areas important for learning and memory processing. Radioactive in situ hybridization was used to evaluate the content of Kv1.1 α-subunit mRNA in the olfactory bulb, ventral, and dorsal hippocampus at different stages of an odor-discrimination associative task in rats. Naive, conditioned, and pseudoconditioned animals were sacrificed at different times either prior to a two-odor significance learning or after odor discrimination was established. Important decreases of Kv1.1 mRNA levels were transiently observed in the ventral hippocampus before successful learning when compared with the pseudoconditioned group. Moreover, temporal group analysis showed significant labeling alterations in the hippocampus of conditioned and pseudoconditioned groups throughout the training. Finally, Kv1.1 mRNA levels in the hippocampus were positively correlated with odor-reward association learning in rats that were beginning to discriminate between odors. These findings indicate that the Kv1.1 subunit is transiently down-regulated in the early stages of learning and suggest that Kv1 channel expression regulation is critical for the modification of neuronal substrates underlying new information acquisition.  相似文献   

7.
8.
Paradoxically, fear conditioning (odor-0.5 mA shock) yields a learned odor preference in the neonate, presumably due to a unique learning and memory circuit that does not include apparent amygdala participation. Post-training opioid antagonism with naltrexone (NTX) blocks consolidation of this odor preference and instead yields memory of a learned odor aversion. Here we characterize the neural circuitry underlying this switch during memory consolidation. Experiment 1 assessed post-training opioid modulation of Fos protein expression within olfactory circuitry (olfactory bulb, piriform cortex, amygdala). Odor-shock conditioning with no post-training treatment (odor preference) induced significant changes in Fos protein expression in the granule cell layer of the olfactory bulb and anterior piriform cortex. Post-training opioid receptor antagonism (odor aversion) prevented the learning-induced changes in the anterior piriform cortex and also induced significant changes in Fos protein expression in the central nucleus of the amygdala. Experiment 2 assessed intra-amygdala opioid modulation of neonate memory consolidation. Post-training infusion of NTX within the amygdala permitted consolidation of an odor aversion, while vehicle-infused pups continued to demonstrate an odor preference. Overall, results demonstrate that opioids modulate memory consolidation in the neonate via modulating Fos protein expression in olfactory circuitry. Furthermore, these results suggest that opioids are instrumental in suppressing neonate fear behavior via modulating the amygdala.  相似文献   

9.
The potential that early olfactory learning might be laterally organized in the brain was investigated in 6-day-old rats. This hypothesis is based on the finding that the commissural systems that subserve bilateral olfactory communication do not mature until the second week of postnatal life. Pups were trained with pairings of cedar odor and intraoral infusions of milk while one nostril was occluded. Animals expressed a conditioned orientation towards cedar if tested with the trained nostril open. No such conditioning was observed if the untrained nostril was open during testing. Further, when individual pups received cedar odor/milk pairings with one nostril open and orange odor/milk pairings with the other open, they expressed a conditioned preference for orange when tested with the orange-trained nostril open, and a preference for cedar when tested with the cedar-trained nostril open. Classically conditioned oral responses (mouthing) also appeared to be lateralized. However, no such unilateral conditioning occurred with respect to behavioral activation, which is also conditioned in this paradigm. Increases in activity to the odor CS were observed regardless of whether the trained or untrained nostril was open during testing. These results suggest that in developing rodents, olfactory memories may be partly represented in structures that can be unilaterally accessed during training and testing. They provide a starting point for isolation of neural substrates of the olfactory conditioning process.  相似文献   

10.
Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.  相似文献   

11.
Conditioning methodologies associated with the psychology of learning are suggested as a new strategy to investigate behavior of the assassin bug Rhodnius prolixus, which is the main vector of Chagas disease in Venezuela. Chagas disease is the fourth leading cause of death in Latin America, as it causes severe chronic illness and approximately 43,000 deaths per year. To illustrate this strategy, two preliminary experiments are reported. In the first, Pavlovian conditioning was examined by pairing an olfactory conditioned stimulus with a temperature unconditioned stimulus. A temperature of 42 degrees C elicits a complex behavioral sequence in R. prolixus consisting of proboscis extension and crawling. Over the course of 12 training trials, this behavioral sequence was not elicited by an olfactory conditioned stimulus. In the second experiment, a latent inhibition paradigm was used to pre-expose R. prolixus to an olfactory conditioned stimulus before pairing the odor with temperature. Over the course of training, an effect of pre-exposure was found. Suggestions for research are discussed and potential conditioned and unconditioned stimuli identified.  相似文献   

12.
The central nervous system of altricial infants is specialized for optimizing attachments to their caregiver. During the first postnatal days, infant rats show a sensitive period for learning and particularly susceptible to learning an attraction to their mother’s odor. Classical conditioning appears to underlie this learning that is expressed behaviorally as anincreased ability to acquire odor preferences and a decreased ability to acquire odor aversions. Specifically, in neonatal rats, pairing an odor with moderately painful shock (0.5mA) or milk produces a subsequent relativepreference for that odor. The neural circuitry supporting theincreased ability to acquire odor preferences appears to be the heightened functioning of the noradrenergic pontine nucleus locus coeruleus. Indeed, norepinephrine from the locus coeruleus appears to be both necessary and sufficient for learning during the sensitive period. On the other hand, thedecreased ability to acquire odor aversions seems to be due to the lack of participation of the amygdala in at least some aversive learning situations. The site of plasticity in the pup’s brain appears to be limited to the olfactory bulb. This neonatal sensitive period for learning ends around postnatal day 9–10, at which time pups make the transition from crawling to walking and classical conditioning becomes “adultlike”. The neonatal behavioral and neural induced changes are retained into adulthood where it modifies sexual behavior.  相似文献   

13.
Context-dependent discrimination learning, a sophisticated form of nonelemental associative learning, has been found in many animals, including insects. The major purpose of this research is to establish a method for monitoring this form of nonelemental learning in rigidly restrained insects for investigation of underlying neural mechanisms. We report context-dependent olfactory learning (occasion-setting problem solving) of salivation, which can be monitored as activity changes of salivary neurons in immobilized cockroaches, Periplaneta americana. A group of cockroaches was trained to associate peppermint odor (conditioned stimulus, CS) with sucrose solution reward (unconditioned stimulus, US) while vanilla odor was presented alone without pairing with the US under a flickering light condition (1.0 Hz) and also trained to associate vanilla odor with sucrose reward while peppermint odor was presented alone under a steady light condition. After training, the responses of salivary neurons to the rewarded peppermint odor were significantly greater than those to the unrewarded vanilla odor under steady illumination and those to the rewarded vanilla odor was significantly greater than those to the unrewarded peppermint odor in the presence of flickering light. Similar context-dependent responses were observed in another group of cockroaches trained with the opposite stimulus arrangement. This study demonstrates context-dependent olfactory learning of salivation for the first time in any vertebrate and invertebrate species, which can be monitored by activity changes of salivary neurons in restrained cockroaches.  相似文献   

14.
Odor enrichment enhances rats’ ability to discriminate between chemically similar odorants. We show here that this modulation of olfactory perception is accompanied by increases in the density of local inhibitory interneuron expressing Zif268 in response to olfactory stimuli. These changes depend on the overlap of the olfactory bulb activation patterns induced by the enrichment odorants with those induced by the testing odorants, in a manner similar to changes in perception. Moreover, we show that enrichment leads to an alteration of the pattern of Zif268 expression, dependent on the odors used for the enrichment indicating a restructuring of odor representation in the olfactory bulb.  相似文献   

15.
16.
The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of plasticity in the olfactory pathway. Training consisted of a single training session including six pairings of an odor CS with a mild foot-shock unconditioned stimulus (US). Twenty-four hours later, the animals were tested for retention of the CS as assessed by the amount of freezing exhibited in the presence of the learned odor. Behavioral data showed that trained animals exhibited a significantly higher level of freezing in response to the CS than control animals. In the same animals, EFPs were recorded in parallel in the anterior piriform cortex (aPC), posterior piriform cortex (pPC), cortical nucleus of the amygdala (CoA), and basolateral nucleus of the amygdala (BLA) following electrical stimulation of the olfactory bulb. Specifically, EFPs recorded before (baseline) and after (during the retention test) training revealed that trained animals exhibited a lasting increase (present before and during presentation of the CS) in EFP amplitude in CoA, which is the first amygdaloid target of olfactory information. In addition, a transient increase was observed in pPC and BLA during presentation of the CS. These data indicate that the olfactory and auditory fear-conditioning neural networks have both similarities and differences, and suggest that the fear-related behaviors in each sensory system may have at least some distinct characteristics.  相似文献   

17.
Within 24 h of their birth-induced norepinephrine surge, rat pups were tested for effects of a beta-receptor agonist, isoproterenol, on olfactory learning. Experiment 1 found no effect of isoproterenol on conditioning by pairing an odor (CS) with intraoral saccharin infusions. There was, however, unexpectedly strong responding in the unpaired control condition, which had the same contingency between the CS and isoproterenol as the paired condition. Experiment 2 found that pairings of odor and isoproterenol alone were sufficient for enhancing responding to the odor. Experiment 3 determined that isoproterenol had acted independently as a US for associative conditioning rather than facilitating nonassociative learning by mere exposure to the odor. These effects of isoproterenol as a US are consistent with the results of previous studies with older rats.  相似文献   

18.
19.
The present study examined the influence of pharmacological modulations of the locus coeruleus noradrenergic system on odor recognition in the mouse. Mice exposed to a nonrewarded olfactory stimulation (training) were able to memorize this odor and to discriminate it from a new odor in a recall test performed 15 min later. At longer delays (30 or 60 min), the familiar odor was no longer retained, and both stimuli were perceived as new ones. Following a post-training injection of the alpha(2)-adrenoceptor antagonist dexefaroxan, the familiar odor was still remembered 30 min after training. In contrast, both the alpha(2)-adrenoceptor agonist UK 14304 and the noradrenergic neurotoxin DSP-4 prevented the recognition of the familiar odor 15 min after the first exposure. Noradrenaline release in the olfactory bulb, assessed by measurement of the extracellular noradrenaline metabolite normetanephrine, was increased by 62% following dexefaroxan injection, and was decreased by 38%-44% after treatment with UK 14304 and DSP-4. Performance of mice in the recall test was reduced by a post-training injection of the beta-adrenoceptor antagonist propranolol or the alpha(1)-antagonist prazosin, thus implicating a role for beta- and alpha(1)-adrenoceptors in the facilitating effects of noradrenaline on short-term olfactory recognition in this model.  相似文献   

20.
In Experimental 1, rat pups 1, 3, 5, or 7 days old received a Phase 1 S1-US (Stimulus 1-unconditioned stimulus) pairing calculated to establish a first-order conditioned aversion to S1 (lemon scent). On the next day each pup received a Phase 2 S2-S1 pairing designed to establish a second-order aversion to S2 (orange scent). Pups at all ages displayed a first-order aversion to S1, but only pups given Phase 2 training when 6 or 8 days old displayed a second-order aversion to S2. Experiment 2 revealed that pups that received the S1-US pairing when 3 days old acquired an aversion to S2 if they were 6 days old when they received the S2-S1 pairing but not if they received the pairing when 4 days old. In Experiment 3, two Phase 2 treatments were compared. One was identical to that employed in Experiments 1 and 2: Pups 4 days old received a sequential exposure to S2 and S1. Another set of pups received a modified treatment: They were exposed first to S2 and then jointly to both S2 and S1. Only pups in the latter set displayed an aversion to S2. It is suggested that these results reflect developmental differences in the memory processes mediating the rat's experience with olfactory stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号