首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors studied how infants come to perceive and act adaptively by presenting 35 three- to nine-month-olds with balls that approached at various speeds according to a staircase procedure. They determined whether infants attempted to reach for the ball and whether they were successful (i.e., contacted the ball). In addition, the time and distance of the ball at the onset of the catching movements were measured for the successful interceptions. The authors found that not only catching skill but also the perceptual judgments of the catchableness improved with age; infants started to take their catching ability into account when judging whether a ball was catchable. Moreover, the authors observed that infants who made imprecise perceptual judgments were more likely to use a distance control strategy, whereas infants who made accurate perceptual judgments were more likely to use the more adaptive time strategy to control the catching movements. They conclude that the present study supports the proposal that, even in prelocomotor infants, the development of perception is intricately linked to or constrained by development in the visual control of action.  相似文献   

2.
《Acta psychologica》2013,142(3):394-401
The integration of separate, yet complimentary, cortical pathways appears to play a role in visual perception and action when intercepting objects. The ventral system is responsible for object recognition and identification, while the dorsal system facilitates continuous regulation of action. This dual-system model implies that empirically manipulating different visual information sources during performance of an interceptive action might lead to the emergence of distinct gaze and movement pattern profiles. To test this idea, we recorded hand kinematics and eye movements of participants as they attempted to catch balls projected from a novel apparatus that synchronised or de-synchronised accompanying video images of a throwing action and ball trajectory. Results revealed that ball catching performance was less successful when patterns of hand movements and gaze behaviours were constrained by the absence of advanced perceptual information from the thrower's actions. Under these task constraints, participants began tracking the ball later, followed less of its trajectory, and adapted their actions by initiating movements later and moving the hand faster. There were no performance differences when the throwing action image and ball speed were synchronised or de-synchronised since hand movements were closely linked to information from ball trajectory. Results are interpreted relative to the two-visual system hypothesis, demonstrating that accurate interception requires integration of advanced visual information from kinematics of the throwing action and from ball flight trajectory.  相似文献   

3.
The present study investigated the contribution of attention to one-handed catching success. A group of skilled (n = 8) and less skilled (n = 9) male subjects were compared in their ability to process secondary task information while executing a primary one-handed catching task. On 40% of the trials, a secondary visual stimulus (SVS) was presented in the peripheral visual field at predetermined times during the flight of the ball. On these trials, the subject was required to complete the one-handed catch and immediately throw the ball at a stationary target. Less skilled subjects made significantly more catching errors under both normal viewing and dual-task processing conditions. The differences were due to errors of positioning rather than grasping. Positioning of the hand appears to require visual attention regardless of skill level, as both skill groups experienced increased difficulty processing secondary task information as the ball approached the catching hand.  相似文献   

4.
Two experiments were conducted in order to investigate the adaptability and associated strategies of the human perceptuo-motor system to deal with changing constraints. In a catching task, perceptual-motor constraints were internally controlled by coupling movement onset of the catch and the illumination circuit in the lab: upon the first movement of the catcher, all lights went out within 3 ms. The authors studied (a) how much movement time catchers prefer if no visual information is available after movement onset, and (b) how movement execution changes under such temporal constraints. It was hypothesised that, in order to accomplish successful catching behaviour, (1) movement initiation would be postponed in order to allow sufficient information uptake before the lights went out, and (2) an alternative control strategy would have to be mobilised, since on-line control becomes inappropriate when catching in the dark. In the first experiment, the adaptation process to the light-dark paradigm was investigated. In the second experiment, the conclusions from experiment 1 were challenged under varying ball speeds. In order to maintain catching performance, subjects initiated the catch approximately 280 ms before ball-hand contact. Next to changes in temporal structure of the catch and subtle kinematic adaptations, evidence for a change in the control mode emerged: while an on-line control strategy was adopted under normal illumination, catching movements seemed to be executed as planned in advance when catching in the dark. Additionally, perceptual constraints seem to determine the time of movement initiation, rather than motor constraints. These results emphasize the capability of the human perceptuo-motor system to adjust promptly to new task constraints.  相似文献   

5.
Anticipatory responses to perturbation have rarely been studied in the co-ordination of dynamic interceptive actions. In this study, the kinematics of ball catching were examined in skilled catchers when mechanical perturbation of the catching arm was expected and unexpected. During trials where the perturbation was anticipated, participants initiated movements earlier (207 +/- 32 ms) than in randomly perturbed trials (223 +/- 34 ms). Furthermore, several individuals also tended to move their hand faster when perturbations were expected compared to baseline trials. Individual analyses revealed that three out of eight participants exhibited changes in the relative timing of the grasp phase to adapt to the specific manipulation of task constraints. Anticipatory responses were revealed in changes not only at movement initiation but also in the resulting adaptations to the co-ordination of reach and grasp phases of ball catching. When the catchers could not anticipate perturbations, movement strategies suggested the use of a continuous tracking-based mode of control rather than a prediction-based mode of control.  相似文献   

6.
Grasping tau.   总被引:6,自引:0,他引:6  
In the present study a direct manipulation of the optical expansion pattern was carried out. What happens to the timing of the grasp movements involved in catching a ball when optical expansion information is not veridically provided? By using 2 luminescent balls of constant size and a luminescent ball that could change its diameter during flight, it was possible to manipulate the rate of optical expansion directly. The results of 2 experiments (binocular vision in Experiment 1 and monocular vision in Experiment 2) showed that the time of the maximal closing velocity of the hand--which conforms to the prediction if Ss use retinal expansion information--was later for the deflating ball than for the balls of constant size. Adjustments to the aperture of the hand in response to the different ball sizes, especially the adjustment of the hand to the deflating ball (even though Ss were not aware that the ball was deflating during its approach), point to a finely attuned perception-action coupling.  相似文献   

7.
D. M. Jacobs and C. F. Michaels (2006) concluded that aspects of hand movements in lateral catching were predicted by the ratio of lateral optical velocity to expansion velocity. Their conclusions were based partly on a modified version of the required velocity model of catching (C. E. Peper, R. J. Bootsma, D. R. Mestre, & F. C. Bakker, 1994). The present article considers this optical ratio in detail and asks whether it, together with a control law, predicts the (often curious) hand trajectories observed in lateral interception. The optical ratio was used to create a succession of target-position inputs for the vector integration to endpoint model of hand movements (D. Bullock & S. Grossberg, 1988). The model used this succession, initial hand position, and model parameters (fit to 60 trials) to predict hand trajectories on each trial. Predicted trajectories were then compared with observed hand trajectories. Hand movements were predicted accurately, especially in the binocular condition, and were superior to predictions based on lateral ball position, the input variable of the required velocity model. The authors concluded, as did C. E. Peper et al. (1994), that perceivers continuously couple movements to optics.  相似文献   

8.
Articular proprioception is normally considered to provide accurate information about limb position, particularly in ball skills in which the eyes are be occupied with tracking the ball. If this is so, then preventing sight of the catching hand without interfering with visual tracking of the ball should affect the accuracy of catching. The experiment reported here indicates that is not the case. Catching is much less accurate if the hand cannot be seen. The errors made are in positioning of the catching hand, which frequently does not contact the ball. In addition, subjects showed larger changes in the felt length arms after catching without sight of the hand than did those who could hand while catching. Visual information about the position of the hand for catching, and this may be because the proprioceptive system is by vision.  相似文献   

9.
The present study is concerned with the perceptual information about the body and space underlying the act of catching a ball. In a series of four experiments, subjects were asked to catch a luminous ball under various visual conditions. In general, catching in a normally illuminated room was contrasted with catching the luminous ball in an otherwise completely dark room. In the third and fourth experiments, intermediate conditions of visual information were included. The results suggest that it is possible to catch a ball with one hand when only the ball is visible, but performance is better when the subject has the benefit of a rich visual environment and two hands. The second experiment indicated that subject performance does improve with practice in the dark, but time spent in the darkened room itself doesn't result in a significant decrement in performance. Results of the third study suggest that vision of one's hand does not aid in the performance of this task whereas the presence of a minimal visual frame appears to aid performance. The final study examined the relation between catching performance and body sway under similar visual conditions. Results of this experiment imply that persons who exhibit relatively little postural sway in full-room lighting performed better at this catching task.  相似文献   

10.
The present study is concerned with the perceptual information about the body and space underlying the act of catching a ball. In a series of four experiments, subjects were asked to catch a luminous ball under various visual conditions. In general, catching in a normally illuminated room was contrasted with catching the luminous ball in an otherwise completely dark room. In the third and fourth experiments, intermediate conditions of visual information were included. The results suggest that it is possible to catch a ball with one hand when only the ball is visible, but performance is better when the subject has the benefit of a rich visual environment and two hands. The second experiment indicated that subject performance does improve with practice in the dark, but time spent in the darkened room itself doesn't result in a significant decrement in performance. Results of the third study suggest that vision of one's hand does not aid in the performance of this task whereas the presence of a minimal visual frame appears to aid performance. The final study examined the relation between catching performance and body sway under similar visual conditions. Results of this experiment imply that persons who exhibit relatively little postural sway in full-room lighting performed better at this catching task.  相似文献   

11.
To catch or grasp an object, the initiation of hand closure has to be coordinated with the relative movement between hand and object. In search of a common control of the initiation of hand closure for both tasks (van de Kamp, Bongers, & Zaal, 2010), the authors studied two tasks, catching while keeping the hand stationary and prehension. They showed that the initiation of hand closure could well be based on first-order time-to-contact in the prehension task but not in the catching task studied. The current study tested if the fact that the hand-object gap was closed at a linear rate made that the initiation of hand closure could not be explained on the basis of that same first-order time-to-contact in the catching task. In Experiment 1, the participants had to catch targets that approached at nonlinear rates while keeping the hand stationary. In Experiment 2, the participants were free to move their hand in catching the approaching objects, allowing the closure of the hand-object gap to occur at a nonlinear rate as it would in natural movements. The results showed that the first-order time-to-contact based control of the initiation of hand closure did apply in Experiment 2, whereas it did not in Experiment 1. It was concluded that constraining the catching task such that it became unfamiliar led to a hampered timing, thus obstructing the finding of the common control in the previous study, and in Experiment 1 of the current study.  相似文献   

12.
Videotapes of the catching action of 28 children aged 4 to 10 years were carefully observed from simultaneous frontal and lateral perspectives. For both one- and two-handed ball catching, three discernible modes of visual attention and limb movement spaced along a maturity continuum were determined. Only for the ten-year-olds catching two-handed did strategies of visual attention (predicting where the ball would be) and limb usage (grasping with the fingers) couple exclusively as in skilled, adult catching. Success in two-handed catching improved exponentially with age from 77% to 96%. For one-handed catching the success rate was 40% at ages 4, 5, and 6 years, 7.5 and 30% at 7 and 8 years, improving steadily to 92% at 10 years. In the middle of age range the drop in performance coincided with the highest incidence of mixed strategies. No gender differences on either strategy or performance were evident.  相似文献   

13.
《Ecological Psychology》2013,25(4):239-263
Four experiments were conducted to examine the relationship between the phasing of hand movements and the pickup of optical information in cascade juggling. Three jugglers of intermediate skill juggled three balls while wearing liquid crystal (LC) glasses that opened and closed at preset intervals. The first experiment, in which the duration of the viewing window was gradually reduced to zero, revealed a preference for seeing the segment of the ball flight following the zenith in one subject; such a preference was hinted at in the other two subjects. The second experiment, in which the tachistoscopic rhythm of the glasses was perturbed, showed that, in the case of a stable phase lock, the phasing of the hand movements was adjusted to restore the visibility of the segment following the zenith when it was lost. The third experiment, however, revealed that, after practice, the jugglers did not become better attuned to the optical information contained in this segment. The fourth experiment, in which two jugglers per- formed a cascade together while viewing the ball flights intermittently, suggested that haptic information about the trajectories of the balls to be caught is not necessary for subsequent catching: Optical information picked up during brief intervals of viewing was sufficient to perform the task equally well as when they juggled alone (i.e., when haptic information about the throws was available). Although, admittedly, the results raised only a tip of the veil covering the perceptual basis of juggling, they testify to the potential power of the new technique that was used to let subjects themselves reveal what optical information is relevant for performance.  相似文献   

14.
Visually guided action implies the existence of information as well as a control law relating that information to movement. For ball catching, the Chapman Strategy--keeping constant the rate of change of the tangent of the elevation angle (d(tan(alpha))/dt)--leads a catcher to the right location at the right time to intercept a fly ball. Previous studies showed the ability to detect the information and the consistency of running patterns with the use of the strategy. However, only direct manipulation of information can show its use. Participants were asked to intercept virtual balls in a Cave Automated Virtual Environment (CAVE) or to judge whether balls would pass behind or in front of them. Catchers in the CAVE successfully intercepted virtual balls with their forehead. Furthermore, the timing of judgments was related to the patterns of changing d(tan(alpha))/dt. The advantages and disadvantages of a CAVE as a tool for studying interceptive action are discussed.  相似文献   

15.
Although learned actions can be automatically elicited in response to expected stimuli for which they have been prepared, little is known about whether learned actions can be automatically initiated by unexpected stimuli. Responses of unwitting participants to balls unexpectedly thrown by an experimenter (n=10) or propelled by a hidden ball cannon (n=22) were recorded by motion capture. Experience of ball catching correlated negatively with hand movement distance, indicating most responses were defensive, but successful catches were made in response to both thrown and fired balls. Although reaction time was faster in response to fired balls, interception was more frequent in response to thrown balls, indicating that movement cues by the thrower facilitated unexpected ball catching. The latency to begin a catching action by the only successful catcher of an unexpectedly fired ball was 296 msec. Given current knowledge of reaction time tasks and latencies of neural substrates of conscious perception and deliberation, it is probable that there was insufficient time available for conscious preparation of catch attempts. Ball catching may represent an example of a learned response which can be rapidly and unconsciously initiated without contextual priming or expectation of the stimulus.  相似文献   

16.
Ball catching involves predicting the time and place of arrival of a mobile object. Visual cues of various kinds may help a ball catcher to perform this task successfully. The aims of the present study were (a) to assess the role of the environment in the spatiotemporal planning of ball-catching movements and (b) to determine what specific cues are actually used for this purpose. In the first experiment described here, subjects' catching performances were compared under four different environmental conditions, namely, normal lighting, ultraviolet light with no background, ultraviolet light with a densely structured background, and ultraviolet light with a sparsely structured background. Our results showed that the sight of the mobile object alone does not provide enough information for a subject to achieve his maximum performance level. Accurately assessing the point of arrival of the ball requires the use of relative visual cues. The environment is also a source of visual cues used to assess the time of arrival of the ball. A second experiment was carried out with a view to determining the exact nature of the visual cues used. Here, the orientation (frontal vs. oblique plane) and the apparent visual angle (6 degrees vs. 42 degrees ) of the background were made to vary. The results of this experiment showed that the orientation of the background affected the percentage of spatial errors produced by the subjects, whereas the apparent visual angle affected the percentage of temporal errors. The relative velocity cue generated by the masking of successive structures in the environment by the oncoming ball seems to have been taking into account in estimating the time of arrival of the ball. This cue seems to be of crucial importance during the 200 ms prior to the time of contact between the ball and the subject's hand. This finding supports the idea that the method used to assess the time to contact may involve velocity information.  相似文献   

17.
《Ecological Psychology》2013,25(4):199-222
Advancing or retreating so as to maintain a projectile's constant vertical optical velocity was suggested by Chapman (1968) as a possible basis for locomotion in ball catching. Three experiments examined this thesis. In Experiments I and 2, the positions of balls and catchers were videotaped to see if the movements of the catchers canceled optical acceleration. Such canceling was indeed observed until just prior to the catch for hand-thrown balls (Experiment 1). The monocular availability of the information predicts success with monocular viewing, confirmed in Experiment 2 with machine-thrown balls. In Experiment 3, observers judged whether a ball (represented as a moving dot on a computer screen) would land at, in front of, or behind them. Performance was above chance, but only some observers used acceleration. Together, the experiments provide broad, though not unequivocal, support for the utilization of optical acceleration to guide locomotion in catching.  相似文献   

18.
Free, 3-D interceptive movements are difficult to visualize and quantify. For ball catching, the endpoint of a movement can be anywhere along the target’s trajectory. Furthermore, the hand may already have begun to move before the subject has estimated the target’s trajectory, and the subject may alter the targeted position during the initial part of the movement. We introduce a method to deal with these difficulties and to quantify three movement phases involved in catching: the initial, non-goal-directed phase; the goal-directed phase, which is smoothly directed toward the target’s trajectory; and the final, interception phase. Therefore, the 3-D movement of the hand was decomposed into a component toward the target’s trajectory (the minimal distance of the hand to the target’s parabolic [MDHP] trajectory) and a component along this trajectory. To identify the goal-directed phase of the MDHP trajectory, we employed the empirical finding that goal-directed trajectories are minimally jerky. The second component, along the target’s trajectory, was used to analyze the interaction of the hand with the ball. The method was applied to two conditions of a ball-catching task. In the manipulated condition, the initial part of the ball’s flight was occluded, so the visibility of the ball was postponed. As expected, the onset of the smooth part of the movement shifted to a later time. This method can be used to quantify anticipatory behavior in interceptive tasks, allowing researchers to gain new insights into movement planning toward the target’s trajectory.  相似文献   

19.
What kind of hand and finger movements are newborn infants preoccupied with, and how are these movements organized and controlled? These questions were studied in two experiments under three conditions: a social condition, in which the mother (in expt 1) or the experimenter (in expt 2) sat face to face with the infant; an object condition, in which a ball moving slowly and irregularly was presented to the infant; and a baseline condition (in expt 1) without ball or mother present. The size of the ball and the distance to it was chosen so that it approximately corresponded to the visual angle of the head of the model. Twenty-six neonates participated in the study ranging from 2 to 6 days of age at the time of observation. All infants were in an alert, optimal awake state during the experiments. The infants' finger movements were scored from video recordings. The result revealed a large variety of relatively independent finger movements. It was found that finger movements differed both in quantity and quality between the three conditions. There were many more finger movements in the social condition than in the object and baseline conditions. In addition, there were relatively more transitional finger movements and flexions of the hand in the social condition, and relatively more thumb-index finger activity and extensions of the hand in the object condition. Finally, the arms were more often forward extended in the object condition than in the social condition. The results support the notion that neonates show different modes of functioning towards people and objects.  相似文献   

20.
Selecting a safe gap before merging into the traffic is a crucial driving skill that relies on images provided by rear-view mirrors or, recently, camera-monitor systems. When using these visual aids, some drivers select dangerously small gaps to cut in front of faster vehicles. They may do so because they base their decision either on information about distance or object size, or on miscalculated information about time-to-passage (TTP). Previous experiments have been unable to compare the role of TTP, speed, and distance information for drivers’ gap selection, as they did not investigate them in the same experimental regime. The present experiments seek to determine the perceptual variables that guide drivers’ rearward gap selection. Using short videos of an approaching vehicle filmed from three different camera heights (low, conventional, high), a total of 61 subjects either made gap safety decisions (Experiment I), or estimated the TTP, speed, and distance of an approaching vehicle (Experiment II). An effect of camera height was found for gap selection, TTP, and distance estimation, but not for speed estimation. For the high camera position, smaller gaps were selected as safe, TTP estimates were longer, and the distance to the approaching vehicle was perceived as farther. An opposite pattern was found for the low camera. Regression analyses suggested that distance is an important player. The subjects strongly relied on distance information when estimating TTP, and perceived distance dominated subjects’ gap selection. Thus, drivers seem to employ distance-based strategies when selecting safe gaps in rear-view mirrors or monitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号