首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For many years, it has been suggested that drugs that interfere with dopamine (DA) transmission alter the "rewarding" impact of primary reinforcers such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in effort-related choice behavior. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA-depleted rats show a heightened sensitivity to response costs, especially ratio requirements. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and show increased selection of low reinforcement/low cost options. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as symptoms such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.  相似文献   

2.
愉悦情绪体验是音乐活动中最普遍的心理现象。通过系统回顾相关的神经科学研究, 认为音乐愉悦体验与大脑奖赏系统的活动有关, 并涉及伏隔核与听觉皮层等其他脑区的交互。在这个过程中, 多巴胺的传递与音乐愉悦体验存在因果联系。基于预期视角, 奖赏预测误差理论和音乐信息理论模型可以解释音乐愉悦体验的产生机制。未来研究应进一步检验伏隔核及各皮层在音乐愉悦体验中的功能, 并整合不同的预期理论。  相似文献   

3.
味觉厌恶性条件反射建立后脑内c-Fos的表达   总被引:5,自引:0,他引:5  
杨杰  林文娟  郑丽  谭会兵 《心理学报》2000,32(4):433-437
以新异味觉刺激糖精水的摄入为条件刺激,以腹腔注射环磷酰胺(CY,免疫抑制剂)或氯化锂(LiCl)为非条件刺激,分别使大鼠建立味觉厌恶性条件反射.在条件刺激日,糖精水在学习组大鼠下列脑区中诱发出密集的Fos表达下丘脑、杏仁核、边缘皮质等,而非学习组在这些区域中却没有或只有少量表达.另外,在丘脑前背侧核、扣带回、下丘脑外侧核、穹隆下器、压部后颗粒皮质、视上核,CY组的Fos表达明显多于LiCl组;而在伏核、杏仁基底外侧核、腹外侧隔核,LiCl组的Fos表达明显多于CY组,这种差异可能是两种药物的不同药理性质所致.  相似文献   

4.
5.
Stress can profoundly affect memory and alter the functioning of the hippocampus and amygdala. Studies have also shown that the antidepressant tianeptine can block the effects of stress on hippocampal and amygdala morphology and synaptic plasticity. We examined the effects of acute predator stress and tianeptine on long-term potentiation (LTP; induced by 100 pulses in 1 s) and primed burst potentiation (PB; a low threshold form of LTP induced by only five physiologically patterned pulses) in CA1 and in the basolateral nucleus (BLA) of the amygdala in anesthetized rats. Predator stress blocked the induction of PB potentiation in CA1 and enhanced LTP in BLA. Tianeptine blocked the stress-induced suppression of PB potentiation in CA1 without affecting the stress-induced enhancement of LTP in BLA. In addition, tianeptine administered under non-stress conditions enhanced PB potentiation in the hippocampus and LTP in the amygdala. These findings support the hypothesis that acute stress impairs hippocampal functioning and enhances amygdaloid functioning. The work also provides insight into the actions of tianeptine with the finding that it enhanced electrophysiological measures of plasticity in the hippocampus and amygdala under stress, as well as non-stress, conditions.  相似文献   

6.
The enhancement of emotional memory is clearly important as emotional stimuli are generally more significant than neutral stimuli for surviving and reproduction purposes. Yet, the enhancement of a negative emotional memory following exposure to stress may result in dysfunctional or intrusive memory that underlies several psychiatric disorders. Here we examined the effects of stress exposure on a negative emotional learning experience as measured by a decrease in the magnitude of the expected quantity of reinforcements in an alley maze. In contrast to other fear-related negative experiences, reward reduction is more associated with frustration and is assessed by measuring the latency to run the length of the alley to consume the reduced quantity of reward. We also examined whether the cannabinoid receptors agonist WIN55,212-2 (5 μg/side) and the glucocorticoid receptors (GRs) antagonist RU-486 (10 ng/side) administered into the rat basolateral amygdala (BLA) could prevent the stress-induced enhancement. We found that intra-BLA RU-486 or WIN55,212 before stress exposure prevented the stress-induced enhancement of memory consolidation for reduction in reward magnitude. These findings suggest that cannabinoid receptors and GRs in the BLA are important modulators of stress-induced enhancement of emotional memory.  相似文献   

7.
Corticotropin-releasing factor (CRF) is a potent neuromodulator of stress-related behaviour but the neural mechanisms underlying these effects are not clear. Studies were designed to test the hypothesis that CRF-induced behavioural arousal involves interactions with brainstem serotonergic systems. To examine interactions between CRF and serotonergic systems in the regulation of behaviour, CRF (1 microg, intracerebroventricular (i.c.v.)) or vehicle was infused in the presence or absence of the selective serotonin re-uptake inhibitor fluoxetine (0, 0.1, 1 or 10 mg/kg, intravenous (i.v.)). Fluoxetine was used at these doses because it is known to decrease serotonin cell firing rates while increasing extracellular serotonin concentrations in select forebrain regions. We then measured behavioural, neurochemical and endocrine responses. CRF increased locomotion and spontaneous non-ambulatory motor activity (SNAMA) in the home cages. Fluoxetine decreased tissue 5-hydroxyindoleacetic acid concentrations, a measure of serotonin metabolism, in specific limbic brain regions of CRF-treated rats (nucleus accumbens shell region, entorhinal cortex, central nucleus of the amygdala). Furthermore, fluoxetine inhibited CRF-induced SNAMA. CRF and fluoxetine independently increased plasma corticosterone concentrations, but the responses had distinct temporal profiles. Overall, these data are consistent with the hypothesis that CRF-induced facilitation of behavioural activity is dependent on brainstem serotonergic systems. Therefore, fluoxetine may attenuate or alleviate some behavioural responses to stress by interfering with CRF-induced responses.  相似文献   

8.
Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65 isoform of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD). However, a detailed analysis of changes in gene expression of GAD in the subregions comprising the extinction network has not been undertaken. Here, we report changes in gene expression of the GAD65 and GAD67 isoforms of GAD, as measured by relative quantitative real-time RT-PCR, in subregions of the amygdala, hippocampus, and prefrontal cortex 24-26 h after extinction of a recent (1-d) or intermediate (14-d) fear memory. Our results show that extinction of a recent memory induces a down-regulation of Gad65 gene expression in the hippocampus (CA1, dentate gyrus) and an up-regulation of Gad67 gene expression in the infralimbic cortex. Extinguishing an intermediate memory increased Gad65 gene expression in the central amygdala. These results indicate a differential regulation of Gad gene expression after extinction of a recent memory vs. intermediate memory.  相似文献   

9.
The shell division of the nucleus accumbens receives noradrenergic input from neurons in the nucleus of the solitary tract (NTS) that transmit information regarding fluctuations in peripheral hormonal and autonomic activity. Accumbens shell neurons also receive converging inputs from limbic areas such as the hippocampus and amygdala that process newly acquired information. However, few studies have explored whether peripheral information regarding changes in emotional arousal contributes to memory processing in the accumbens. The beneficial effects on memory produced by emotional arousal and the corresponding activation of NTS neurons may be mediated through influences on neuronal activity in the accumbens shell during memory encoding. To explore this putative relationship, Experiment 1 examined interactions between the NTS and the accumbens shell in modulating memory for responses acquired after footshock training in a water-motivated inhibitory avoidance task. Memory for the noxious shock was significantly improved by posttraining excitation of noradrenergic NTS neurons. The enhanced retention produced by activating NTS neurons was attenuated by suppressing neuronal activity in the accumbens shell with bupivacaine (0.25%/0.5 microl). Experiment 2 examined the direct involvement of accumbens shell noradrenergic activation in the modulation of memory for psychologically arousing events such as a reduction in perceived reward value. Noradrenergic activation of the accumbens shell with phenylephrine (1.0 microg/0.5 microl) produced an enhancement in memory for the frustrating experience relative to control injections as evidenced by runway performance on an extended seven-day retention test. These findings demonstrate a functional relationship between NTS neurons and the accumbens shell in modulating memory following physiological arousal and identifies a role of norepinephrine in modulating synaptic activity in the accumbens shell to facilitate this process.  相似文献   

10.
In this study, we examined the effects of restricted feeding and of central administration of an orexigenic ghrelin agonist GHRP-6 on peptide mRNA expression in the hypothalamus. We compared rats fed ad libitum with rats that were allowed food for only 2?h every day, and treated with a continuous chronic i.c.v. infusion of GHRP-6 or vehicle. Ad libitum fed rats exposed to GHRP-6 increased their food intake and body weight over 6 days, but, at the end of this period, neuropeptide Y mRNA expression in the arcuate nucleus was not different to that in control rats. By contrast, expression of neuropeptide Y mRNA in the arcuate nucleus was elevated in food-restricted rats, consistent with the interpretation that increased expression reflects increased hunger. However, neuropeptide Y mRNA expression was no greater in food-restricted rats infused with GHRP-6 than in food-restricted rats infused with vehicle; thus if the drive to eat was stronger in rats infused with GHRP-6, this was not reflected by higher levels of neuropeptide Y mRNA expression. Expression of vasopressin mRNA and corticotrophin releasing factor (CRF) mRNA in the paraventricular nucleus (PVN) was not changed by food restriction. GHRP-6 infusion increased CRF mRNA expression in ad libitum rats only.  相似文献   

11.
Evidence suggests that plasticity of the amygdalar and hippocampal GABAergic system is critical for fear memory formation. In this study we investigated in wild-type and genetically manipulated mice the role of the activity-dependent 65-kDa isozyme of glutamic acid decarboxylase (GAD65) in the consolidation and generalization of conditioned fear. First, we demonstrate a transient reduction of GAD65 gene expression in the dorsal hippocampus (6 h post training) and in the basolateral complex of the amygdala (24 h post training) during distinct phases of fear memory consolidation. Second, we show that targeted ablation of the GAD65 gene in Gad65(-/-) mice results in a pronounced context-independent, intramodal generalization of auditory fear memory during long-term (24 h or 14 d) but not short-term (30 min) memory retrieval. The temporal specificity of both gene regulation and memory deficits in Gad65 mutant mice suggests that GAD65-mediated GABA synthesis is critical for the consolidation of stimulus-specific fear memory. This function appears to involve a modulation of neural activity patterns in the amygdalo-hippocampal pathway as indicated by a reduction in theta frequency synchronization between the amygdala and hippocampus of Gad65(-/-) mice during the expression of generalized fear memory.  相似文献   

12.
复吸是药物成瘾的重要特征,应激是诱发复吸的因素之一。该文介绍了用于研究应激诱发复吸的动物恢复模型,阐述了涉及应激诱发复吸的神经生物学基础。大量研究结果表明,下丘脑外侧的终纹床核与杏仁核内的促肾上腺皮质激素释放因子和去甲肾上腺素是参与应激诱发复吸的重要神经递质。内侧前额叶皮层可能是介导应激、药物点燃及药物相关线索等各类因素诱发复吸的共同通路  相似文献   

13.
Professor Richard F. Thompson and his highly influential work on the brain substrates of associative learning and memory have critically shaped my research interests and scientific approach. I am tremendously grateful and thank Professor Thompson for the support and influence on my research and career. The focus of my research program is on associative learning and its role in the control of fundamental, motivated behaviors. My long-term research goal is to understand how learning enables environmental cues to control feeding behavior. We use a combination of behavioral studies and neural systems analysis approach in two well-defined rodent models to study how learned cues are integrated with homeostatic signals within functional forebrain networks, and how these networks are modulated by experience. Here, I will provide an overview of the two behavioral models and the critical neural network components mapped thus far, which include areas in the forebrain, the amygdala and prefrontal cortex, critical for associative learning and decision-making, and the lateral hypothalamus, which is an integrator for feeding, reward and motivation.  相似文献   

14.
Previous reports indicate that the central nucleus of the amygdala (CeA) stimulates adrenocorticotropin and corticosterone secretion, suggesting a role for this region in central hypothalamo-pituitary-adrenocortical (HPA) stress regulation. To evaluate this hypothesis, this study assessed the impact of CeA lesion on the response of hypophysiotrophic paraventricular nucleus (PVN) neurons to acute restraint and chronic unpredictable stress exposure. In contrast to previous reports, CeA lesions did not affect corticosterone or ACTH secretion induced by acute stress. Acute restraint increased PVN corticotropin releasing hormone (CRH) mRNA expression, increased the number of parvocellular PVN neurons expressing the co-secretagogue arginine vasopressin (AVP), and induced cFOS mRNA expression in the parvocellular PVN. However, there was no additional effect of CeA lesion on any measure of PVN activation. Chronic unpredictable stress exposure induced long-term activation of the HPA axis, noted by thymic involution, adrenal hypertrophy and increased PVN CRH mRNA expression. Stress-induced changes in thymus and adrenal weights were not affected by CeA lesion. Further, CeA lesion rats did not differ from controls in post-stress CRH mRNA expression. However, basal CRH mRNA expression was increased in the PVN of CeA rats, suggesting that the CeA plays a role in long-term inhibition of the PVN. The results of these studies are not consistent with the hypothesis that the CeA is necessary for stress-induced pituitary-adrenocortical activation. Rather, this region may play a stressor-specific modulatory role in regulation of HPA function.  相似文献   

15.
The temperament dimension of harm avoidance defines an individual’s biological tendency to exhibit altering levels of anxious, inhibiting, and cautious behavior. High harm avoidance and anxiety are highly comorbid, likely due to activity in similar neural circuitries involving the dorsal raphe nucleus. Despite the many investigations that have explored personality factors and brain function, none have determined the influence of ongoing activity within dorsal raphe networks on harm avoidance. The aim of this study was to explore such a relationship. In 62 healthy subjects, a series of 180 functional magnetic resonance images covering the entire brain were collected, and each subject completed the 240-item TCI-R questionnaire. Independent component analyses were performed to define the dorsal raphe network and then to determine the regions significantly correlated with harm avoidance. The independent component analyses revealed three signal intensity fluctuation maps encompassing the dorsal raphe nucleus, showing interactions with regions of the amygdala, hippocampus, nucleus accumbens, and prefrontal, insular, and cingulate cortices. Within these systems, the resting signal intensity was significantly coupled to harm avoidance in the bilateral basal amygdala, bilateral ventral hippocampus, bilateral insula, bilateral nucleus accumbens, and medial prefrontal cortex. Note that we could not measure serotonergic output, but instead measured signal changes in the dorsal raphe that likely reflect synaptic activity. These data provide evidence that at rest, signal intensity fluctuations within the dorsal raphe networks are related to harm avoidance. Given the strong relationship between harm avoidance and anxiety-like behaviors, it is possible that ongoing activity within this identified neural circuitry can contribute to an individual developing anxiety disorders.  相似文献   

16.
The current study was conducted to determine the potential relationship between stress-induced corticosterone secretion and corticosteroid receptor mRNA levels after 5 days of intermittent stress. In particular, we were interested in the rate at which animals terminate a stress response, and how this termination may be altered by repeated stress. Adult male Sprague-Dawley rats were subjected to either 5 days of restraint stress or 5 days of an unpredictable stress paradigm. Restraint-stress induced corticosterone secretion was measured on Days 1 and 5 in both groups, and animals were killed on Day 6. Glucocorticoid receptor (GR), and mineralocorticoid (MR) mRNA levels were determined using in-situ hybridization techniques. Five days of restraint stress caused an habituation of the plasma corticosterone response to stress measured 60 and 90 min post-stress initiation; this pattern of corticosterone secretion was not observed in the animals subjected to unpredictable stress. Five days of either stress paradigm did not alter MR mRNA levels measured within the hippocampus or GR mRNA levels within the hippocampus or the medial parvocellular division of the paraventricular nucleus of the hypothalamus (mpPVN). However, an individual's GR mRNA levels measured within the CA1/2 region of the hippocampus and the mpPVN were significantly correlated with the degree of habituation of the corticosterone response to stress measured on Day 5. This suggests that an increase in the rate of termination of the stress response and levels of GR within the hippocampus and mpPVN may be functionally related.  相似文献   

17.
There is growing interest in the role that the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA), components of the extended amygdala, play in drug addiction. Within the BNST and CeA, there is an extensive system of intrinsic, primarily GABAergic, interconnections known to synthesize a variety of neuropeptides, including corticotrophin-releasing factor (CRF). The actions of CRF at extrahypothalamic sites,including the BNST and CeA, have been implicated in stress responses and in the aversive effects of withdrawal from drugs of abuse. Most recently, we have shown a critical role for extrahypothalamic CRF in stress-induced reinstatement of drug seeking in rats. In attempting to determine which brain circuitry mediates the effect of stress on relapse and, more specifically, where in the brain CRF acts to initiate the behaviours involved in relapse, we focused on the BNST and CeA. In the present paper, we summarize studies we have conducted that explore the role of these brain sites in stress-induced relapse to heroin and cocaine seeking, and then consider how our findings can be understood within the more general context of what is known about the role of the BNST and CeA in stress-related and general approach behaviours, such as drug seeking.  相似文献   

18.
The Reinforcement Sensitivity Theory proposes that the Behavioral Approach System (BAS) comprises dopaminergic brain regions and underpins reward sensitivity causing impulsivity. It has been shown in a supraliminal priming task that highly reward sensitive subjects have a larger reaction time (RT) priming effect and make more commission errors to prime-incongruent targets. We adapted a similar task to event-related fMRI and hypothesized that (1) high reward sensitivity is associated with increased activation in dopaminergic brain regions, the ventral striatum in particular, (2) that BAS related personality traits predict impulsivity and (3) that the BAS effects are larger after adjusting for the interactive influence of trait avoidance, as predicted by the Joint Subsystems Hypothesis. Fourteen healthy females participated in the fMRI experiment and were scored on sensitivity to reward (SR) and trait avoidance, i.e., sensitivity to punishment (SP) and neuroticism (N). SR scores were adjusted by SP and N scores. As hypothesized, adjusted SR scores predicted, more than SR scores alone, activity in the ventral striatum (left caudate nucleus and nucleus accumbens). SR+/ SP− scores predicted increased impulsiveness, i.e., a right side RT priming effect. These results support the Joint Subsystems Hypothesis.  相似文献   

19.
Adolescence is characterized by complex developmental processes that impact behavior, biology, and social functioning. Two such adolescence-specific processes are puberty and increases in reward sensitivity. Relations between these processes are poorly understood. The present study focused on examining unique effects of puberty, age, and sex on reward and threat sensitivities and volumes of subcortical brain structures relevant for reward/threat processing in a healthy sample of 9–18 year-olds. Unlike age, pubertal status had a significant unique positive relationship with reward sensitivity. In addition, there was a trend for adolescent females to exhibit higher threat sensitivity with more advanced pubertal development and higher reward and threat sensitivity with older age. Similarly, there were significant puberty by sex interaction effects on striatal volumes, i.e., left nucleus accumbens and right pallidum. The present pattern of results suggests that pubertal development, independent of chronological age, is uniquely associated with reward hypersensitivity and with structural differences in striatal regions implicated in reward processing.  相似文献   

20.
The present study was conducted to investigate several possible neural sites for d-amphetamine's effect on mouse killing and feeding behaviors. d-Amphetamine (10, 20, and 30 μg) injected into each lateral ventricle, suppressed mouse kiling, food, and water intake in a dose-dependent manner. Bilateral adminstration of d-amphetamine (20 μg) into the central amygdaloid nucleus abolished mouse killing behavior but did not affect feeding and drinking. By contrast, bilateral amphetamine injections into the substantia nigra, or into the ventral region of the caudate nucleus, did not suppress mouse killing behavior, but significantly decreased food and water intake. The lateral hypothalamus was sensitive to d-amphetamine injections, which suppressed mouse killing and food intake as well as water intake. d-Amphetamine injections into the nucleus accumbens produced inconsistent effects on mouse killing and feeding. Our observations suggest a differentiation of the neural sites that mediate feeding from those underlying mouse killing behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号