首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activation of β-adrenergic receptors (β-ARs) enhances hippocampal memory consolidation and long-term potentiation (LTP), a likely mechanism for memory storage. One signaling pathway linked to β-AR activation is the cAMP-PKA pathway. PKA is critical for the consolidation of hippocampal long-term memory and for the expression of some forms of long-lasting hippocampal LTP. How does β-AR activation affect the PKA-dependence, and persistence, of LTP elicited by distinct stimulation frequencies? Here, we use in vitro electrophysiology to show that patterns of stimulation determine the temporal phase of LTP affected by β-AR activation. In addition, only specific patterns of stimulation recruit PKA-dependent LTP following β-AR activation. Impairments of PKA-dependent LTP maintenance generated by pharmacologic or genetic deficiency of PKA activity are also abolished by concurrent activation of β-ARs. Taken together, our data show that, depending on patterns of synaptic stimulation, activation of β-ARs can gate the PKA-dependence and persistence of synaptic plasticity. We suggest that this may allow neuromodulatory receptors to fine-tune neural information processing to meet the demands imposed by numerous synaptic activity profiles. This is a form of “metaplasticity” that could control the efficacy of consolidation of hippocampal long-term memories.The hippocampus importantly contributes to memory function in the mammalian brain (Zola-Morgan et al. 1986; Eichenbaum et al. 1990; Otto and Eichenbaum 1992; Phillips and LeDoux 1992; Remondes and Schuman 2004). It has reciprocal connections with numerous cortical areas, including those responsible for high-level integration of spatial and contextual data from the external environment (Lavenex and Amaral 2000). As such, the hippocampus is well positioned to receive and survey a broad range of information and select behaviorally salient data for long-term storage. Activity-dependent enhancement of hippocampal synaptic strength can store information carried in patterns of afferent neural activity (Bliss and Collingridge 1993; Moser et al. 1998; Nathe and Frank 2003; Whitlock et al. 2006). Substantial evidence suggests that long-term potentiation (LTP) of synaptic strength plays important roles in the formation of long-term memory (LTM) (Doyere and Laroche 1992; Bourtchuladze et al. 1994; Abel and Lattal 2001; Genoux et al. 2002). As such, mechanistic studies of LTP have shed valuable light on how the mammalian brain stores new information.The hippocampus receives dense noradrenergic projections from the locus coeruleus, a brain structure that can influence many vital brain functions, including attention, sleep, arousal, mood regulation, learning, and memory (Berridge and Waterhouse 2003). Both α- and β-adrenergic receptor subtypes are present on hippocampal neurons (Morrison and Foote 1986; Berridge and Waterhouse 2003), and noradrenaline (NA) acts on hippocampal β-adrenergic receptors (β-ARs) to facilitate the retention and recall of memory (Izquierdo et al. 1998; Ji et al. 2003; Murchison et al. 2004). In humans, stimulation of the noradrenergic neuromodulatory system enhances memory for emotional stimuli, and inhibition of β-ARs prevents this memory enhancement (Cahill et al. 1994; van Stegeren et al. 1998; O’Carroll et al. 1999).Consistent with the notion that selective enhancement of LTM may occur following β-AR activation, stimulation of β-ARs can also facilitate the persistence of LTP. In areas CA3 and CA1, β-AR activation facilitates the induction of long-lasting LTP when paired with certain patterns of electrical stimulation (Huang and Kandel 1996; Gelinas and Nguyen 2005). However, the mechanisms by which different patterns of stimulation control synaptic responsiveness to β-AR activation are unclear.β-ARs couple to guanine-nucleotide-binding regulatory Gs proteins to stimulate adenylyl cyclase activity and increase intracellular cAMP (Seeds and Gilman 1971; Maguire et al. 1977). A main target of cAMP signaling is activation of cAMP-dependent protein kinase (PKA), a kinase that is required for some forms of long-lasting LTP and for consolidation of hippocampal LTM (Frey et al. 1993; Abel et al. 1997; Nguyen and Woo 2003). Interestingly, the PKA-dependence of hippocampal LTP displays plasticity: Specific temporal patterns of synaptic stimulation, such as repeated and temporally spaced 100-Hz stimulation, elicit LTP that requires PKA for its expression (Woo et al. 2003). Also, spatial “enrichment” can increase the PKA-dependence of LTP in mice, and this is correlated with improved hippocampal memory function (Duffy et al. 2001). However, it is unclear whether activation of β-ARs can critically gate the PKA-dependence of LTP. In this study, we examine the effects of β-AR activation on LTP generated by various patterns of afferent stimulation in area CA1 of the hippocampus, and we determine the role of PKA in these β-AR-modulated forms of LTP.  相似文献   

2.
In a typical transposition task, an animal is presented with a single pair of stimuli (for example, S3+ S4−, where plus and minus denote reward and nonreward and digits denote stimulus location on a sensory dimension such as size). Subsequently, an animal is presented with a testing pair that contains a previously reinforced or nonreinforced stimulus and a novel stimulus (for example, S2–S3 and S4–S5). Does the choice of a novel S2 instead of previously reinforced S3 in a testing pair S2–S3 indicate that the animal has learned a relation (i.e., “select smaller”)? This review of empirical evidence and theoretical accounts shows that an organism''s behavior in a transposition task is undoubtedly influenced by prior reinforcement history of the training stimuli (Spence, 1937). However, it is also affected by two other factors that are relational in nature—a similarity of two testing stimuli to each other and an overall similarity of the testing pair as a whole to the training pair as a whole. The influence of the two latter factors is especially evident in studies that use multiple pairs of training stimuli and a wide range of testing pairs comprising nonadjacent stimuli (Lazareva, Miner, Young, & Wasserman, 2008; Lazareva, Wasserman, & Young, 2005). In sum, the evidence suggests that both prior reinforcement history and relational information affect an animal''s behavior in a typical transposition task.  相似文献   

3.
Recent research suggests that drug-related memories are reactivated after exposure to environmental cues and may undergo reconsolidation, a process that can strengthen memories. Conversely, reconsolidation may be disrupted by certain pharmacological agents such that the drug-associated memory is weakened. Several studies have demonstrated disruption of memory reconsolidation using a drug-induced conditioned place preference (CPP) task, but no studies have explored whether cocaine-associated memories can be similarly disrupted in cocaine self-administering animals after a cocaine priming injection, which powerfully reinstates drug-seeking behavior. Here we used cocaine-induced CPP and cocaine self-administration to investigate whether the N-methyl-D-aspartate receptor antagonist (+)-5methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) given just prior to reactivation sessions would suppress subsequent cocaine-primed reinstatement (disruption of reconsolidation). Systemic injection of MK-801 (0.05 or 0.20 mg/kg administered intraperitoneally) in rats just prior to reactivation of the cocaine-associated memory in the CPP context attenuated subsequent cocaine-primed reinstatement, while no disruption occurred in rats that did not receive reactivation in the CPP context. However, in rats trained to self-administer cocaine, systemic administration of MK-801 just prior to either of two different types of reactivation sessions had no effect on subsequent cocaine-primed reinstatement of lever-pressing behavior. Thus, systemic administration of MK-801 disrupted the reconsolidation of a cocaine-associated memory for CPP but not for self-administration. These findings suggest that cocaine-CPP and self-administration do not use similar neurochemical processes to disrupt reconsolidation or that cocaine-associated memories in self-administering rats do not undergo reconsolidation, as assessed by lever-pressing behavior under cocaine reinstatement conditions.The ability to disrupt previously consolidated memories in a reactivation-dependent manner is thought to be due to the disruption of a memory reconsolidation process. This disruption of reconsolidation has been observed in a wide variety of tasks and species (Nader et al. 2000b; Sara 2000; Alberini 2005; Riccio et al. 2006). Early reconsolidation experiments primarily focused on aversive learning paradigms, with an emphasis on disruption of reconsolidation as a potential treatment for posttraumatic stress disorder (Misanin et al. 1968; Nader et al. 2000a; Debiec and Ledoux 2004; Brunet et al. 2008). Only more recently have investigators demonstrated that appetitive memories also undergo reconsolidation; most, but not all (Yim et al. 2006), studies found a disruption of expression for the drug-associated memory, suggesting the potential to target the reconsolidation process as a treatment for drug addiction (Lee et al. 2005; Miller and Marshall 2005; Milekic et al. 2006; Valjent et al. 2006; Brown et al. 2007; Kelley et al. 2007; Sadler et al. 2007; Fricks-Gleason and Marshall 2008; Milton et al. 2008a, b).Miller and Marshall (2005) showed that reconsolidation of cocaine conditioned place preference (CPP) in the rat could be disrupted by either pre- or post-treatment of a phosphorylation inhibitor of extracellular signal-regulated kinase (1/2) (ERK) in a reactivation-dependent manner. Other studies have shown that protein synthesis inhibitors (Milekic et al. 2006), a matrix metalloproteinase (MMP) inhibitor (Brown et al. 2007), a β-noradrenergic receptor antagonist (Bernardi et al. 2006; Robinson and Franklin 2007a; Fricks-Gleason and Marshall 2008), and an N-methyl-D-aspartate (NMDA) receptor antagonist (Kelley et al. 2007; Sadler et al. 2007) can also disrupt the reconsolidation of drug-associated CPP memories. Studies by Lee and colleagues have shown that Zif268 antisense oligodeoxynucleotide infused into the basolateral amygdala prior to reactivation of memory for a cocaine-associated cue (the conditioned stimulus or CS) disrupts the ability of cocaine-associated cues to establish subsequent acquisition of a new instrumental response (Lee et al. 2005), and the ability of a drug-associated cue to induce relapse under a second-order schedule (Lee et al. 2006a). Thus, cocaine-associated memories appear to undergo reconsolidation in both Pavlovian and operant conditioning paradigms.Relapse to drug-seeking or drug-taking behavior can occur after re-exposure to three types of stimuli: the drug itself, drug-associated contextual and discrete cues, and stress; and all of these may promote relapse in humans (for review, see Epstein et al. 2006). Only a few CPP studies (Valjent et al. 2006; Brown et al. 2007) and no self-administration studies to our knowledge have tested whether the drug-associated memory can be rendered susceptible to disruption by pharmacological agents such that subsequent cocaine-primed reinstatement is suppressed. This drug-primed effect is observed in humans, producing relapse (Ludwig et al. 1974; Jaffe et al. 1989), and in rats, producing robust reinstatement of drug-seeking behavior in both CPP and self-administration tasks (McFarland and Ettenberg 1997; McFarland and Kalivas 2001; Sanchez and Sorg 2001; Kalivas and McFarland 2003). The development of a treatment strategy that makes use of the reconsolidation process will ultimately need to be powerful enough to diminish drug-seeking behavior in the presence of sizable doses of the drug itself. Therefore, the primary goal of this study was to determine whether drug-primed reinstatement could be suppressed in rats that have the memory reactivated in the presence of a pharmacological agent in cocaine self-administering rats. Since we previously have demonstrated the ability to disrupt cocaine-primed reinstatement only in animals in which the memory was reactivated using cocaine-induced CPP, we also tested the extent to which the same parameters used to disrupt reconsolidation in a cocaine-induced CPP task would disrupt reconsolidation in a cocaine self-administration task under conditions of drug-induced reinstatement.To examine this question, we chose the noncompetitive NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801). MK-801 has been shown to disrupt reconsolidation of spatial tasks (Przybyslawski and Sara 1997), fear tasks (Lee et al. 2006b), amphetamine-induced CPP (Sadler et al. 2007), cocaine-induced CPP (Kelley et al. 2007), and sucrose self-administration (Lee and Everitt 2008). Importantly, the two studies examining CPP using MK-801 did not explore whether MK-801 suppressed drug-seeking behavior in a manner that was dependent on whether the memory was reactivated, leaving open the possibility that it was not a reconsolidation process that was disrupted by MK-801.Here we demonstrate that MK-801 injected prior to cocaine-primed reinstatement of CPP disrupted subsequent cocaine-primed reinstatement of CPP, and this disruption was dependent on CPP contextual reactivation since injection of MK-801 and cocaine in the home cage did not disrupt subsequent cocaine-primed reinstatement of CPP. However, drug-seeking behavior in animals trained for cocaine self-administration was not disrupted when rats were reactivated under the same parameters that disrupted cocaine-induced CPP or when rats were given a reactivation session identical to their self-administration sessions. We thus demonstrate for the first time that memories associated with cocaine-induced CPP and cocaine self-administration are not similarly susceptible to disruption by MK-801.  相似文献   

4.
We examined a procedure consisting of a preference assessment, prompting, contrived conditioned establishing operations, and consequences for correct and incorrect responses for teaching children with autism to mand “which?” We used a modified multiple baseline design across 3 participants. All the children learned to mand “which?” Generalization occurred to the natural environment, to a novel activity, and to a novel container; the results were maintained over time.Key words: mand for information, verbal behavior, verbal operant, whichContrived motivating operations have been used to teach mands for information to children with autism, including the mands “what?” (e.g., Williams, Donley, & Keller, 2000), “where?” (e.g., Betz, Higbee, & Pollard, 2010; Lechago, Carr, Grow, Love, & Almason, 2010), and “who?” (e.g., Endicott & Higbee, 2007; Sundberg, Loeb, Hale, & Eigenheer, 2002). More recently, researchers have examined the effects of contriving establishing operations (CEOs) in four different ways to teach children with autism to acquire the mands “what?” (Marion, Martin, Yu, & Buhler, 2011; Roy-Wsiaki, Marion, Martin, & Yu, 2010) and “where?” (Marion, Martin, Yu, Buhler, & Kerr, in press). Like the mands “what?” and “where?,” the mand “which?” is a mand for information that gives the speaker the ability to gather specific information regarding an item (e.g., “Which book is mine?”). Given the dearth of research that has examined interventions to teach mands for information using “which?,” the purpose of the present study was to extend the work of Marion et al. (2011, in press) by contriving one of four CEOs for teaching the mand “which?” to children with autism, and to assess for generalization to the other CEOs, the natural environment, and over time.  相似文献   

5.
Extinction is a form of inhibitory learning that suppresses a previously conditioned response. Both fear and drug seeking are conditioned responses that can lead to maladaptive behavior when expressed inappropriately, manifesting as anxiety disorders and addiction, respectively. Recent evidence indicates that the medial prefrontal cortex (mPFC) is critical for the extinction of both fear and drug-seeking behaviors. Moreover, a dorsal-ventral distinction is apparent within the mPFC, such that the prelimbic (PL-mPFC) cortex drives the expression of fear and drug seeking, whereas the infralimbic (IL-mPFC) cortex suppresses these behaviors after extinction. For conditioned fear, the dorsal-ventral dichotomy is accomplished via divergent projections to different subregions of the amygdala, whereas for drug seeking, it is accomplished via divergent projections to the subregions of the nucleus accumbens. Given that the mPFC represents a common node in the extinction circuit for these behaviors, treatments that target this region may help alleviate symptoms of both anxiety and addictive disorders by enhancing extinction memory.Emotional memories, both in the aversive and appetitive domains, are important for guiding behavior. Regulating the expression of these memories is critical for mental health. Extinction of classical conditioning is one form of emotion regulation that is easily modeled in animals. In the aversive domain, a conditioned stimulus (CS) is typically paired with a shock, while in the appetitive domain, a CS is paired with the availability of food or drug reward. Repeated presentation of the CS in the absence of the reinforcer leads to extinction of conditioned fear or drug-seeking behaviors. In recent years, there have been great advances in our understanding of the neural circuitry responsible for this form of inhibitory learning (for reviews, see Cammarota et al. 2005; Maren 2005; Myers and Davis 2007; Quirk and Mueller 2008). The prefrontal cortex has been strongly implicated in fear expression (Powell et al. 2001; Vidal-Gonzalez et al. 2006; Corcoran and Quirk 2007) and fear extinction (Herry and Garcia 2002; Milad and Quirk 2002; Gonzalez-Lima and Bruchey 2004; Hugues et al. 2004; Burgos-Robles et al. 2007; Hikind and Maroun 2008; Lin et al. 2008; Mueller et al. 2008; Sotres-Bayon et al. 2008), and more recently, in expression of drug seeking after extinction (Peters et al. 2008a,b). These findings are consistent with a well-documented role of the prefrontal cortex in executive function and emotional regulation (Miller 2000; Fuster 2002; Quirk and Beer 2006; Sotres-Bayon et al. 2006).In this review, we propose that the medial prefrontal cortex (mPFC) regulates the expression of both fear and drug memories after extinction, through divergent projections to the amygdala and nucleus accumbens, respectively. Extinction failure in the aversive domain can lead to anxiety disorders (Delgado et al. 2006; Milad et al. 2006), while extinction failure in the appetitive domain can lead to relapse in addicted subjects (Kalivas et al. 2005; Garavan and Hester 2007). A common neural circuit for extinction of fear and drug memories would suggest shared mechanisms and treatment strategies across both domains.  相似文献   

6.
7.
If the hippocampus plays a role in the detection of novel environmental features, then novelty should be associated with altered hippocampal neural activity and perhaps also measures of neuroplasticity. We examined Fos protein expression within subregions of rat hippocampal formation as an indicator of recent increases in neuronal excitation and cellular processes that support neuroplasticity. Environmental novelty, but not environmental complexity, led to a selective increase of Fos induction in the final “output” subregion of the dorsal hippocampal trisynaptic circuit (CA1) and a primary projection site (layer five of the lateral entorhinal cortex, ERC), as well as in the perirhinal cortex. There was no selective effect of novelty on Fos expression within “input” elements of the trisynaptic circuit (ERC layer two, the dentate gyrus or CA3) or other comparison brain regions that may be responsive to overall motor-sensory activity or anxiety levels (primary somatosensory and motor cortex or hypothalamic paraventricular nucleus). Test session ambulatory behavior increased with both novelty and environmental complexity and was not significantly correlated with Fos expression patterns in any of the brain regions examined. In contrast, the extent of manipulated environmental novelty was strongly correlated with Fos expression in CA1. These results support the prospect that a novelty-associated signal is generated within hippocampal neurocircuitry, is relayed to cortical projection sites, and specifically up-regulates neuroplasticity-supporting processes with dorsal hippocampal CA1 and ERC layer five. Whether novelty-dependent Fos induction in perirhinal cortex depends on this hippocampal output or reflects an independent process remains to be determined.The hippocampus appears to play an essential role in the encoding of configural and temporal relationships between experiential elements thereby supporting memory for environmental contexts and discrete episodes (Rudy and Sutherland 1995). A related hypothesis is that the hippocampus serves as a functional comparator of present and past (stored) experience, and consequently directs attention and mnemonic processes to the novel aspects of present experience (Margulies 1985; Otto and Eichenbaum 1992; Knight 1996; Mizumori et al. 1999; Moser and Paulsen 2001; Vinogradova 2001; Fyhn et al. 2002; Norman and O''Reilly 2003). A comparator capability of the hippocampus seems plausible given the converging parallel neural pathways by which multimodal sensory information is presented to the hippocampus. The entorhinal cortex serves as an anatomical gateway through which the majority of cortically processed information is presented to the hippocampus. This cortical information is relayed directly (via monosynaptic connections) to CA1 neurons (originating primarily from layer three of the entorhinal cortex) or to CA3 neurons (originating primarily from layer two of the entorhinal cortex) (Steward and Scoville 1976; Remondes and Schuman 2004; Witter and Amaral 2004). In addition, CA1 neurons are presented with cortical information (originating primarily from layer two of the entorhinal cortex) that has first been processed by the dentate gyrus and CA3, via the serial connections of the hippocampal formation trisynaptic circuit (Andersen et al. 1971). Although both CA1 and CA3 neurons receive direct and indirect neural input from entorhinal cortex, several hippocampal-circuit models propose that CA1 neurons have unique access to both past (stored) and ongoing experiential neural patterns (Hasselmo and Schnell 1994; Moser and Paulsen 2001; Norman and O''Reilly 2003). Alternatively, other models posit an important role of CA3 neurons (Mizumori et al. 1999; Vinogradova 2001; Lee et al. 2005a) and/or dentate gyrus granule cells (Meeter et al. 2004; Lee et al. 2005a) in the detection of novel features of experience.Implicit in these models of hippocampal function is the assumption that the hippocampus is engaged differently when presented with novel versus familiar stimuli patterns. There is some evidence for experience-dependent differences in rodent hippocampal activity that are manifest by electrophysiological differences in individual or ensemble neuronal activity patterns (Otto and Eichenbaum 1992; Fyhn et al. 2002; Nitz and McNaughton 2004). Neuroimaging studies in humans have detected increased fMRI activity in the hippocampal region during encoding of novel visual stimuli (Stern et al. 1996; Johnson et al. 2008). Moreover, humans with hippocampal damage exhibit altered event-related potentials in response to novel stimuli (Knight 1996).Hippocampal activity that varies with the novelty of an experience may be important for guiding ongoing behavior (e.g., exploratory behavior and vigilance), and if so, should also produce detectable differences in activity of hippocampal efferents. In addition, detection of novelty may be important for altering neuroplastic processes within components of the hippocampus. The goal of our study was to examine across hippocampal formation subregions the levels of a cellular marker of neural activity and neuroplasticity (Fos expression) associated with environmental experiences that vary in novelty and complexity. The expression of the protein product, Fos, of the immediate early gene, c-fos, may be a good molecular indicator of recent increases in general molecular changes that contribute to neuroplasticity. Expression of Fos reflects an intracellular state of cells that varies primarily as a result of recent activation by intercellular signals (e.g., neurotransmitters, hormones, paracrine factors, and adhesion molecules) (Herdegen and Leah 1998). Hippocampal Fos expression is associated with recent increases in neuronal firing, although apparently in a complex fashion (Labiner et al. 1993). Increases in hippocampal Fos is also believed to be an important mediator of activity-dependent neuroplasticity (Sheng and Greenberg 1990).In our study we examined the number of Fos immunopositive cells in the dentate gyrus, subregions of the hippocampus (CA1, CA2, CA3, and CA4), and layers two and five of the lateral entorhinal cortex. In addition, we examined Fos immunoreactivity in the perirhinal cortex. There is accumulating support for this brain region to play a role in the detection of novel stimuli in a configuration independent manner (Brown and Aggleton 2001; Kumaran and Maguire 2007). For comparison purposes, we also examined Fos expression patterns in primary somatosensory cortex, primary motor cortex, and the hypothalamic paraventricular nucleus (PVN). Fos expression levels in the somatosensory and motor cortex may reflect the varying amounts of somatosensation and motor activity present during the experimental test-day experiences. Fos expression levels in the PVN may reflect the varying amounts of test-day stress and anxiety associated with the different treatment conditions.Several other rat studies have examined the relationship between stimuli novelty (e.g., visual images, extramaze environmental cues, or new learning tasks) and Fos expression in the hippocampus (Hess et al. 1995a; Wan et al. 1999; Vann et al. 2000). Whereas those other studies utilized tasks that had a training phase and operant reward component, our study examined Fos expression in rats placed in a novel or familiar environment with no training components or operant contingencies. The pattern of Fos expression associated with unrewarded exploratory behavior may better reflect the extent to which novelty and complexity differentially and automatically engage the hippocampus than does the pattern of Fos expression associated with various learning regimens and their particular task demands (Kumaran and Maguire 2007).  相似文献   

8.
Any instructor of behavior analysis is no doubt aware that neuroscience, characterized by a cognitive–mentalistic approach, has substantial influence in behavioral science. As a counterpoint, behavior analysis can raise timely questions and promote critical thinking, as did Skinner (1977) in his critical analysis of cognitive psychology. Keenan and Dillenburger (2004) have produced a CD-ROM with effective audio-visual presentations to aid in the teaching of behavior analysis and in critiquing reductionistic mentalism.  相似文献   

9.
Using a two-way signaled active avoidance (2-AA) learning procedure, where rats were trained in a shuttle box to avoid a footshock signaled by an auditory stimulus, we tested the contributions of the lateral (LA), basal (B), and central (CE) nuclei of the amygdala to the expression of instrumental active avoidance conditioned responses (CRs). Discrete or combined lesions of the LA and B, performed after the rats had reached an asymptotic level of avoidance performance, produced deficits in the CR, whereas CE lesions had minimal effect. Fiber-sparing excitotoxic lesions of the LA/B produced by infusions of N-methyl-d-aspartate (NMDA) also impaired avoidance performance, confirming that neurons in the LA/B are involved in mediating avoidance CRs. In a final series of experiments, bilateral electrolytic lesions of the CE were performed on a subgroup of animals that failed to acquire the avoidance CR after 3 d of training. CE lesions led to an immediate rescue of avoidance learning, suggesting that activity in CE was inhibiting the instrumental CR. Taken together, these results indicate that the LA and B are essential for the performance of a 2-AA response. The CE is not required, and may in fact constrain the instrumental avoidance response by mediating the generation of competing Pavlovian responses, such as freezing.Early studies of the neural basis of fear often employed avoidance conditioning procedures where fear was assessed by measuring instrumental responses that reduced exposure to aversive stimuli (e.g., Weiskrantz 1956; Goddard 1964; Sarter and Markowitsch 1985; Gabriel and Sparenborg 1986). Despite much research, studies of avoidance failed to yield a coherent view of the brain mechanisms of fear. In some studies, a region such as the amygdala would be found to be essential and in other studies would not. In contrast, rapid progress in understanding the neural basis of fear and fear learning was made when researchers turned to the use of Pavlovian fear conditioning (Kapp et al. 1984, 1992; LeDoux et al. 1984; Davis 1992; LeDoux 1992; Cain and Ledoux 2008a). It is now well established from such studies that specific nuclei and subnuclei of the amygdala are essential for the acquisition and storage of Pavlovian associative memories about threatening situations (LeDoux 2000; Fanselow and Gale 2003; Maren 2003; Maren and Quirk 2004; Schafe et al. 2005; Davis 2006).Several factors probably contributed to the fact that Pavlovian conditioning succeeded where avoidance conditioning struggled. First, avoidance conditioning has long been viewed as a two-stage learning process (Mowrer and Lamoreaux 1946; Miller 1948b; McAllister and McAllister 1971; Levis 1989; Cain and LeDoux 2008b). In avoidance learning, the subject initially undergoes Pavlovian conditioning and forms an association between the shock and cues in the apparatus. The shock is an unconditioned stimulus (US) and the cues are conditioned stimuli (CS). Subsequently, the subject learns the instrumental response to avoid the shock. Further, the “fear” aroused by the presence of the CS motivates learning of the instrumental response. Fear reduction associated with successful avoidance has even been proposed to be the event that reinforces avoidance learning (e.g., Miller 1948b; McAllister and McAllister 1971; Cain and LeDoux 2007). Given that Pavlovian conditioning is the initial stage of avoidance conditioning, as well as the source of the “fear” in this paradigm, it would be more constructive to study the brain mechanisms of fear through studies of Pavlovian conditioning rather than through paradigms where Pavlovian and instrumental conditioning are intermixed. Second, avoidance conditioning was studied in a variety of ways, but it was not as well appreciated at the time as it is today; that subtle differences in the way tasks are structured can have dramatic effects on the brain mechanisms required to perform the task. There was also less of an appreciation for the detailed organization of circuits in areas such as the amygdala. Thus, some avoidance studies examined the effects of removal of the entire amygdala or multiple subdivisions (for review, see Sarter and Markowitsch 1985). Finally, fear conditioning studies typically involved a discrete CS, usually a tone, which could be tracked from sensory processing areas of the auditory system to specific amygdala nuclei that process the CS, form the CS–US association, and control the expression of defense responses mediated by specific motor outputs. In contrast, studies of avoidance conditioning often involved diffuse cues, and the instrumental responses used to indirectly measure fear were complex and not easily mapped onto neural circuits.Despite the lack of progress in understanding the neural basis of avoidance responses, this behavioral paradigm has clinical relevance. For example, avoidance behaviors provide an effective means of dealing with fear in anticipation of a harmful event. When information is successfully used to avoid harm, not only is the harmful event prevented, but also the fear arousal, anxiety, and stress associated with such events; (Solomon and Wynne 1954; Kamin et al. 1963). Because avoidance is such a successful strategy to cope with danger, it is used extensively by patients with fear-related disorders to reduce their exposure to fear- or anxiety-provoking situations. Pathological avoidance is, in fact, a hallmark of anxiety disorders: In avoiding fear and anxiety, patients often fail to perform normal daily activities (Mineka and Zinbarg 2006).We are revisiting the circuits of avoidance conditioning from the perspective of having detailed knowledge of the circuit of the first stage of avoidance, Pavlovian conditioning. To most effectively take advantage of Pavlovian conditioning findings, we have designed an avoidance task that uses a tone and a shock. Rats were trained to shuttle back and forth in a runway in order to avoid shock under the direction of a tone. That is, the subjects could avoid a shock if they performed a shuttle response when the tone was on, but received a shock if they stayed in the same place (two-way signaled active avoidance, 2-AA). While the amygdala has been implicated in 2-AA (for review, see Sarter and Markowitsch 1985), the exact amygdala nuclei and their interrelation in a circuit are poorly understood.We focused on the role of amygdala areas that have been studied extensively in fear conditioning: the lateral (LA), basal (B), and central (CE) nuclei. The LA is widely thought to be the locus of plasticity and storage of the CS–US association, and is an essential part of the fear conditioning circuitry. The basal amygdala, which receives inputs from the LA (Pitkänen 2000), is not normally required for the acquisition and expression of fear conditioning (Amorapanth et al. 2000; Nader et al. 2001), although it may contribute under some circumstances (Goosens and Maren 2001; Anglada-Figueroa and Quirk 2005). The B is also required for the use of the CS in the motivation and reinforcement of responses in other aversive instrumental tasks (Killcross et al. 1997; Amorapanth et al. 2000). The CE, through connections to hypothalamic and brainstem areas (Pitkänen 2000), is required for the expression of Pavlovian fear responses (Kapp et al. 1979, 1992; LeDoux et al. 1988; Hitchcock and Davis 1991) but not for the motivation or reinforcement of aversive instrumental responses (Amorapanth et al. 2000; LeDoux et al. 2009). We thus hypothesized that damage to the LA or B, but not to the CE, would interfere with the performance of signaled active avoidance.  相似文献   

10.
The role of the cerebellum in eyeblink conditioning is well established. Less work has been done to identify the necessary conditioned stimulus (CS) pathways that project sensory information to the cerebellum. A possible visual CS pathway has been hypothesized that consists of parallel inputs to the pontine nuclei from the lateral geniculate nucleus (LGN), superior colliculus (SC), pretectal nuclei, and visual cortex (VCTX) as reported by Koutalidis and colleagues in an earlier paper. The following experiments examined whether electrical stimulation of neural structures in the putative visual CS pathway can serve as a sufficient CS for eyeblink conditioning in rats. Unilateral stimulation of the ventral LGN (Experiment 1), SC (Experiment 2), or VCTX (Experiment 3) was used as a CS paired with a periorbital shock unconditioned stimulus. Stimulation was delivered to the hemisphere contralateral to the conditioned eye. Rats in all experiments were given five 100-trial sessions of paired or unpaired eyeblink conditioning with the stimulation CS followed by three paired sessions with a light CS. Stimulation of each visual area when paired with the unconditioned stimulus supported acquisition of eyeblink conditioned responses (CRs) and substantial savings when switched to a light CS. The results provide evidence for a unilateral parallel visual CS pathway for eyeblink conditioning that includes the LGN, SC, and VCTX inputs to the pontine nuclei.Pavlovian eyeblink (eyelid closure and nictitating membrane movement) conditioning is established by pairing a conditioned stimulus (CS), usually a tone or light, with an unconditioned stimulus (US) that elicits the eyeblink reflex. The eyeblink conditioned response (CR) emerges over the course of paired training, occurs during the CS, and precedes the US (Gormezano et al. 1962; Schneiderman et al. 1962). Neurobiological investigations of Pavlovian eyeblink conditioning have primarily focused on the cerebellum, which is the site of memory formation and storage (Thompson 2005). The anterior interpositus nucleus is necessary for acquisition and retention of the eyeblink CR (Lavond et al. 1985; Krupa and Thompson 1997; Freeman Jr. et al. 2005; Thompson 2005; Ohyama et al. 2006). Lobule HVI and the anterior lobe of the cerebellar cortex (lobules I–V) contribute to acquisition, retention, and timing of the CR (McCormick and Thompson 1984; Perrett et al. 1993; Perrett and Mauk 1995; Attwell et al. 1999, 2001; Medina et al. 2000; Nolan and Freeman Jr. 2005; Nolan and Freeman 2006). The brainstem nuclei that comprise the proximal ends of the CS and US input pathways to the cerebellum have also been identified.The pontine nuclei (PN) and inferior olive (IO) receive CS and US information, respectively, and are the primary sensory relays into the interpositus nucleus and cerebellar cortex (Thompson 2005). Conditioned stimulus information converges in the PN, which receives projections from lower brainstem, thalamus, and cerebral cortex (Glickstein et al. 1980; Brodal 1981; Schmahmann and Pandya 1989; Knowlton et al. 1993; Campolattaro et al. 2007). The lateral pontine nuclei (LPN) are the sources of auditory CS information projected into the cerebellum. Lesions of the LPN block CR retention to a tone CS, but have no effect on CRs to a light CS (Steinmetz et al. 1987). Thus, CS inputs from different sensory modalities may be segregated at the level of the PN. Neurons in the PN project CS information into the contralateral cerebellum via mossy fibers in the middle cerebellar peduncle that synapse primarily on granule cells in the cerebellar cortex and on neurons in the deep nuclei (Bloedel and Courville 1981; Brodal 1981; Steinmetz and Sengelaub 1992). Stimulation of the PN acts as a supernormal CS supporting faster CR acquisition than conditioning with peripheral stimuli (Steinmetz et al. 1986, 1989; Rosen et al. 1989; Steinmetz 1990; Tracy et al. 1998; Freeman Jr. and Rabinak 2004). The primary focus of these experiments was to investigate the most proximal components of the CS pathway in eyeblink conditioning. There has been less emphasis on identifying the critical CS pathways that project information to the PN.Recent studies using lesions, inactivation, stimulation, and neural tract tracing have provided evidence that the auditory CS pathway that is necessary for acquisition and retention of eyeblink conditioning is comprised of converging inputs to the medial auditory thalamic nuclei (MATN), and a direct ipsilateral projection from the MATN to the PN (Halverson and Freeman 2006; Campolattaro et al. 2007; Freeman et al. 2007; Halverson et al. 2008). Unilateral lesions of the MATN, contralateral to the conditioned eye, block acquisition of eyeblink CRs to a tone CS but have no effect on conditioning with a light CS (Halverson and Freeman 2006). Inactivation of the MATN with muscimol blocks acquisition and retention of CRs to an auditory CS, and decreases metabolic activity in the PN (Halverson et al. 2008). The MATN has a direct projection to the PN and stimulation of the MATN supports rapid CR acquisition (Campolattaro et al. 2007). Our current model of the auditory CS pathway consists of converging inputs to the MATN, and direct unilateral thalamic input to the PN (Halverson et al. 2008).Less work has been done to identify the visual CS pathway necessary for eyeblink conditioning. A possible parallel visual CS pathway has been hypothesized, which includes parallel inputs to different areas of the PN from the lateral geniculate nucleus (LGN), superior colliculus (SC), visual cortex (VCTX), and pretectal nuclei (Koutalidis et al. 1988). In the Koutalidis et al. study, lesions of the LGN, SC, VCTX, or pretectal nuclei alone had only a partial effect on CR acquisition with a light CS. Lesions of any two of these structures together produced a more severe impairment on acquisition and combined lesions of all of these areas completely blocked CR acquisition to a light CS (Koutalidis et al. 1988). Each visual area investigated in the Koutalidis et al. study has a direct projection to the PN that could be important for eyeblink conditioning. The ventral LGN projects to the medial, and to a lesser extent, the lateral PN (Graybiel 1974; Wells et al. 1989). The superficial, intermediate, and deep layers of SC send projections to both the dorsomedial and dorsolateral PN (Redgrave et al. 1987; Wells et al. 1989). The VCTX has a direct projection to the rostral and lateral portions of the PN (Glickstein et al. 1972; Baker et al. 1976; Mower et al. 1980; Wells et al. 1989). The pretectal nuclei also have a direct projection to both the medial and lateral PN (Weber and Harting 1980; Wells et al. 1989). However, stimulation of the anterior pretectal nucleus is not an effective CS for eyeblink conditioning (Campolattaro et al. 2007). The failure to establish conditioning with stimulation of the anterior pretectal nucleus as a CS suggests that there may be differences in the efficacy of the various visual inputs to the PN for cerebellar learning. The following experiments investigated the sufficiency of stimulation of the LGN, SC, or primary VCTX as a CS for eyeblink conditioning in rats.  相似文献   

11.
Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100 msec to 20 sec (10 Hz to 0.05 Hz). LTP at Schaffer collateral–CA1 synapses was obtained at intervals from 100 msec to 5 sec, with maximal LTP at 350–500 msec (2–3 Hz, delta frequency). In addition, a short-duration potentiation was present over the entire range of burst intervals. We found that N-methyl-d-aspartic acid (NMDA) receptors were more important for LTP induction by burst stimulation, but L-type calcium channels were more important for LTP induction by continuous high-frequency stimulation. NMDA receptors were even more critical for short-duration potentiation than they were for LTP. We also compared repeated burst stimulation with a single primed burst. In contrast to results from repeated burst stimulation, primed burst potentiation was greater when a 200-msec interval (theta frequency) was used, and a 500-msec interval was ineffective. Whole-cell recordings of postsynaptic membrane potential during burst stimulation revealed two factors that may determine the interval dependence of LTP. First, excitatory postsynaptic potentials facilitated across bursts at 500-msec intervals but not 200-msec or 1-sec intervals. Second, synaptic inhibition was suppressed by burst stimulation at intervals between 200 msec and 1 sec. Our data show that CA1 synapses are more broadly tuned for potentiation than previously appreciated.Long-term potentiation (LTP) is used as a model for studying synaptic events during learning and memory (Bliss and Collingridge 1993; Morris 2003; Lynch 2004). At most synapses, LTP is triggered by postsynaptic Ca2+ influx through N-methyl-d-aspartic acid (NMDA) glutamate receptors (Collingridge et al. 1983; Harris et al. 1984; Herron et al. 1986) and, under some conditions, through L-type voltage-gated Ca2+ channels (Grover and Teyler 1990, 1994; Morgan and Teyler 1999). LTP was discovered in the dentate gyrus (Bliss and Lomo 1973) following several seconds of 10–100 Hz stimulation of the perforant path. Since then, many LTP studies have used similar long, high-frequency stimulation (HFS) protocols, most typically 100 Hz, 1 sec (Bliss and Collingridge 1993). Although effective, HFS does not resemble physiological patterns of activity (Albensi et al. 2007). Patterned stimulation resembling physiological activity, in particular theta burst stimulation, is also effective for LTP induction (Larson et al. 1986; Staubli and Lynch 1987; Capocchi et al. 1992; Nguyen and Kandel 1997). Theta burst stimulation consists of short bursts (4–5 stimuli at 100 Hz) repeated at 5 Hz, which lies within the hippocampal theta frequency range (4–12 Hz) (Bland 1986; Buzsáki 2002). Primed burst stimulation, another form of patterned stimulation, involves delivery of a priming stimulus followed by a single short burst (Larson and Lynch 1986; Rose and Dunwiddie 1986). The temporal requirements for primed burst LTP are quite precise (Diamond et al. 1988; Greenstein et al. 1988; Larson and Lynch 1989): Intervals less than 140 msec or greater than 200 msec are ineffective.The mechanisms underlying theta frequency-dependent LTP have been studied primarily using the primed burst protocol (Larson and Lynch 1986, 1988, 1989; Pacelli et al. 1989; Davies and Collingridge 1996). Activation of GABAB autoreceptors during the priming stimulus suppresses GABA release during the following burst (Davies et al. 1990; Lambert and Wilson 1994; Olpe et al. 1994), allowing greater postsynaptic depolarization (Larson and Lynch 1986; Pacelli et al. 1989) and more effective NMDA receptor activation (Davies and Collingridge 1996). Consequently, temporal requirements for primed burst potentiation match the time course of GABAB autoreceptor-mediated suppression of GABA release (Davies et al. 1990; Davies and Collingridge 1993; Mott et al. 1993).Besides theta, hippocampal activity is observed at other frequencies, notably sharp waves (0.01–5 Hz) (Buzsáki 1986, 1989; Suzuki and Smith 1987) and low-frequency oscillations (≤1 Hz) (Wolansky et al. 2006; Moroni et al. 2007). These lower frequencies dominate during slow wave sleep (Buzsáki 1986; Suzuki and Smith 1987; Wolansky et al. 2006; Moroni et al. 2007), and contribute to hippocampal memory processing (Buzsáki 1989; Pennartz et al. 2002). While synchronized population activity over frequencies from <1 Hz to 12 Hz is associated with hippocampal memory function, previous LTP studies have focused on theta. We therefore investigated burst stimulation at frequencies from 0.05 Hz to 10 Hz. We found that CA1 synapses potentiate to some degree over this entire range and that maximal potentiation occurs around delta frequency rather than theta.  相似文献   

12.
13.
Like many forms of Pavlovian conditioning, eyelid conditioning displays robust extinction. We used a computer simulation of the cerebellum as a tool to consider the widely accepted view that extinction involves new, inhibitory learning rather than unlearning of acquisition. Previously, this simulation suggested basic mechanistic features of extinction and savings in eyelid conditioning, with predictions born out by experiments. We review previous work showing that the simulation reproduces behavioral phenomena and lesion effects generally taken as evidence that extinction does not reverse acquisition, even though its plasticity is bidirectional with no site dedicated to inhibitory learning per se. In contrast, we show that even though the sites of plasticity are, in general, affected in opposite directions by acquisition and extinction training, most synapses do not return to their naive state after acquisition followed by extinction. These results suggest caution in interpreting a range of observations as necessarily supporting extinction as unlearning or extinction as new inhibitory learning. We argue that the question “is extinction reversal of acquisition or new inhibitory learning?” is therefore not well posed because the answer may depend on factors such as the brain system in question or the level of analysis considered.Pavlovian eyelid conditioning is robustly bidirectional. Conditioned responses that are acquired via training that pairs a conditioned stimulus (CS) with an unconditioned stimulus (US) can be rapidly extinguished with CS-alone training or unpaired CS-US training (Gormezano et al. 1983; Napier et al. 1992; Macrae and Kehoe 1999; Kehoe and Macrae 2002; Kehoe and White 2002; Weidemann and Kehoe 2003). Whether extinction involves unlearning or separate inhibitory learning that suppresses conditioned response expression remains an important issue for both behavioral theories and for investigations of underlying neural mechanisms (Pavlov 1927; Hull 1943; Konorski 1948, 1967; Rescorla and Wagner 1972; Mackintosh 1974; Rescorla 1979; Bouton 1993, 2002; Falls 1998; Myers and Davis 2002; Kehoe and White 2002). Here, we addressed this issue using a computer simulation of the cerebellum that is capable of emulating many aspects of eyelid conditioning. Although simulation results cannot resolve such issues, several aspects of the simulation''s behavior are instructive. Even though the sites of plasticity are, in general, affected in opposite directions by acquisition and extinction training, the simulation can emulate several behavioral phenomena that are generally taken as evidence that extinction does not involve unlearning. Moreover, we found that the strengths of most synapses are quite different from their naive state following acquisition and then extinction. Independent of the overall biological accuracy of this simulation, these results highlight a variety of implications for ongoing debates about the roles of unlearning versus new learning in extinction.A combination of factors makes it possible to analyze the neural basis of eyelid conditioning in detail, and to build and test computer simulations of its cerebellar mechanisms (Medina and Mauk 2000). Foremost among these is the close association between eyelid conditioning and the cerebellum (Thompson 1986; Raymond et al. 1996; Mauk and Donegan 1997). Previous studies from several labs have shown that (1) cerebellar output drives the motor pathways that produce the conditioned responses (McCormick and Thompson 1984), (2) presentation of a CS is conveyed to the cerebellum via activation of certain of its mossy fiber inputs (Steinmetz et al. 1986; Hesslow et al. 1999), and (3) presentation of the US is conveyed via activation of certain climbing fiber inputs to the cerebellum (Fig. 1A; Mauk et al. 1986). These factors are complemented by the extent to which the synaptic organization and physiology of the cerebellum are known (Eccles et al. 1967; Ito 1984), as are the behavioral properties of eyelid conditioning (Gormezano et al. 1983; Kehoe and Macrae 2002). These advantages combine with the speed of current computers to make possible the construction of biologically detailed and large-scale computer simulations of the cerebellum that can then be thoroughly tested using standard eyelid conditioning protocols (Medina et al. 2000, 2001, 2002; Medina and Mauk 1999, 2000).Open in a separate windowFigure 1Emulation of eyelid conditioning in a computer simulation of the cerebellum. (A) A schematic representation of the simulation and how it was trained using an eyelid conditioning-like protocol. The output of the simulation comes from the summed activity of the six cerebellar deep nucleus cells (blue box). The CS was conveyed to the simulation by phasic activation of 18 of the 600 mossy fibers and tonic activation of six mossy fibers (green box). The US was emulated by a brief excitatory conductance applied to the single climbing fiber. The remainder of the simulation consisted of 10,000 granule cells, 900 Golgi cells, 20 stellate/basket cells, and 20 Purkinje cells with essentials of the connectivity as shown. (B) Acquisition, extinction, and savings by the simulation. Each panel shows the equivalent of 10 d of acquisition (left panel), extinction (center), and reacquisition (right) training. Individual sweeps are averages of 10 trials, which are clustered together to approximate the equivalent of one daily session of eyelid conditioning. These sessions are numbered at the left, progressing from front to back. The blue portion of the sweeps denotes the presence of the CS. (C) The strength of the mossy fiber-to-nucleus synapses in the simulation over the three phases of training. The synapses that progressively increase in strength during acquisition and reacquisition and decrease during extinction are the six that are tonically activated by the CS. Note that extinction training only slowly and thus incompletely reverses the strengthened synapses. Savings during reacquisition in the simulation is largely attributable to this residual plasticity. The continued increase in the strength of these synapses does not produce a comparable increase in response amplitude, rather, it reflects the tendency for the network to transfer plasticity from cortex (pauses in Purkinje activity produced by LTD) to the nucleus (increased strength of mossy fiber-to-nucleus synapses). How long this process continues depends on a number of unknown factors.The present results are more easily appreciated with a brief review of previous studies (Medina et al. 2000, 2001, 2002) showing how the simulation emulates acquisition, extinction, and savings during reacquisition. These phenomena are shown for the simulation in the three panels of Figure 1B. The underlying essential elements can be summarized briefly. Presentation of a CS activates subsets of granule cells, and these subsets change somewhat over the duration of the CS. Paired training induces long-term depression (LTD) at CS-activated granule-to-Purkinje synapses that are activated when the US is presented. This leads to a learned and well timed decrease in the activity of Purkinje cells during the CS (Hesslow and Ivarsson 1994), which leads to the induction of long-term potentiation (LTP) at mossy fiber-to-nucleus synapses activated by the CS. As this plasticity develops, nucleus cells encounter during the CS strong excitation combined with release from inhibition and therefore discharge robustly, thereby driving the expression of conditioned responses (McCormick and Thompson 1984). These steps suggest that learning first occurs in the cerebellar cortex, before robust conditioned responses are seen. We have observed evidence for this latent learning in cerebellar cortex (Ohyama and Mauk 2001).During extinction, CS-activated granule-to-Purkinje synapses undergo LTP because their activation occurs in the absence of climbing fiber activity. The essential suppression of climbing fiber activity below the typical level of 1 Hz is produced by inhibition from cerebellar output (Sears and Steinmetz 1991; Hesslow and Ivarsson 1996; Kenyon et al. 1998a,b; Miall et al. 1998), which is robust during the expression of conditioned responses. This prediction of the simulation is supported by observations that blocking inhibition of climbing fibers prevents extinction (Medina et al. 2002).We have shown previously that savings during reacquisition results, at least in part, from plasticity in the cerebellar deep nucleus that is relatively resistant to extinction (Medina et al. 2001). The strengths of the CS-activated mossy fiber-to-nucleus synapses in the simulation are shown in Figure 1C for acquisition, extinction, and reacquisition. Because learned pauses in Purkinje cell activity are still present early in extinction training, the strengths of CS-activated mossy fiber-to-nucleus synapses continue to increase. Once conditioned responses are fully extinguished, due to the restoration of robust Purkinje cell activity during the CS via the induction of LTP at CS-activated granule-to-Purkinje synapses, then CS-activated mossy fiber-to-nucleus synapses begin to undergo LTD and decrease in strength. The rate at which these synapses decrease in strength with additional extinction training depends on unknown factors such as the level of Purkinje activity required for induction of LTD. These results show in principle, however, that plasticity in the cerebellar cortex is sufficient to extinguish conditioned responses, and that a network displaying fully extinguished conditioned responses can still contain strengthened mossy fiber-to-nucleus synapses. In the simulation, savings occur largely because this residual plasticity in the cerebellar nucleus enhances the conditioned responses produced by the relearning of decreased activity in the Purkinje cells. In support, we have shown in rabbits that plasticity in the cerebellar nucleus persists following extinction, and that a measure of the magnitude of this residual plasticity correlates with the rate of reacquisition (Medina et al. 2001).Here, we used the mechanisms of extinction in this simulation to stimulate discussion regarding the issue of extinction as unlearning versus extinction as new learning.  相似文献   

14.
The conditioned stimulus (CS) pathway that is necessary for visual delay eyeblink conditioning was investigated in the current study. Rats were initially given eyeblink conditioning with stimulation of the ventral nucleus of the lateral geniculate (LGNv) as the CS followed by conditioning with light and tone CSs in separate training phases. Muscimol was infused into the medial pontine nuclei (MPN) after each training phase to examine conditioned response (CR) retention to each CS. The spread of muscimol infusions targeting the MPN was examined with fluorescent muscimol. Muscimol infusions into the MPN resulted in a severe impairment in retention of CRs with the LGNv stimulation and light CSs. A less severe impairment was observed with the tone CS. The results suggest that CS information from the LGNv and light CSs is relayed to the cerebellum through the MPN. Retrograde tracing with fluoro-gold (FG) showed that the LGNv and nucleus of the optic tract have ipsilateral projections to the MPN. Unilateral inputs to the MPN from the LGNv and nucleus of the optic tract may be part of the visual CS pathway that is necessary for visual eyeblink conditioning.The neural substrates of associative motor learning have been studied extensively using eyeblink conditioning (Christian and Thompson 2003; Thompson 2005). Eyeblink conditioning is typically established by pairing a tone or light conditioned stimulus (CS) with an unconditioned stimulus (US) that elicits the eyeblink reflex. An eyeblink conditioned response (CR) emerges over the course of paired training, and the peak of eyelid closure occurs at the onset time of the US. Results from experiments using temporary lesions of the cerebellar deep nuclei or cerebellar cortex indicate that the anterior interpositus nucleus and cerebellar cortex are necessary for acquisition, expression, and extinction of eyeblink conditioning (Krupa et al. 1993; Hardiman et al. 1996; Krupa and Thompson 1997; Garcia and Mauk 1998; Medina et al. 2001; Bao et al. 2002; Freeman et al. 2005a). Blocking cerebellar output with inactivation of the superior cerebellar peduncle, red nucleus, or brainstem motor nuclei selectively blocks CR expression but not acquisition, providing further evidence that learning occurs in the cerebellum (Chapman et al. 1990; Krupa et al. 1993, 1996; Krupa and Thompson 1995).Sensory stimuli from every modality are sent to the pontine nuclei (PN), which receive projections from the lower brainstem, thalamus, and cerebral cortex (Glickstein et al. 1980; Brodal 1981; Mihailoff et al. 1989; Schmahmann and Pandya 1989; Wells et al. 1989; Knowlton et al. 1993; Campolattaro et al. 2007). Neurons in the PN project CS information to the cerebellum via mossy fibers in the middle cerebellar peduncle that synapse on granule cells in the cerebellar cortex and on neurons in the interpositus nucleus (Bloedel and Courville 1981; Brodal 1981; Steinmetz and Sengelaub 1992; Mihailoff 1993). Lesions of the middle cerebellar peduncle impair eyeblink conditioning with auditory, somatosensory, and visual CSs (Lewis et al. 1987). Bilateral electrolytic lesions of the dorsolateral and lateral pontine nuclei (LPN) block retention of CRs to an auditory CS but have no effect on light-elicited CRs (Steinmetz et al. 1987). Inactivation of the contralateral LPN blocks CRs to a tone CS but not to lateral reticular nucleus stimulation in rabbits (Bao et al. 2000). Moreover, stimulation of the LPN or middle cerebellar peduncle is a sufficient CS for eyeblink conditioning (Steinmetz et al. 1986, 1987; Tracy et al. 1998; Bao et al. 2000; Freeman and Rabinak 2004; Freeman et al. 2005b; Campolattaro and Freeman 2008). The findings from the lesion, inactivation, and stimulation studies provide evidence that the PN is the proximal part of the CS pathway for cerebellar learning. These studies also indicate that the LPN is the primary source of auditory CS input to the cerebellum.Only a few studies have examined the visual CS pathway necessary for eyeblink conditioning. The dorsal and ventral divisions of the lateral geniculate nucleus of the thalamus (LGNd, LGNv), pretectal nuclei, visual cortex (VCTX), and superior colliculus (SC) comprise a hypothesized parallel visual CS pathway for eyeblink conditioning (Koutalidis et al. 1988). Combined lesions of all of these visual areas completely block acquisition, lesions of two visual areas produce a partial impairment, and lesions in one visual area do not impair CR acquisition (Koutalidis et al. 1988). Stimulation of the VCTX, SC, and LGNv support eyeblink conditioning, and each of these structures has a direct unilateral projection to the PN that could be important for eyeblink conditioning (Halverson et al. 2009). The lesion and stimulation studies provide evidence that structures in the hypothesized visual CS pathway are independently capable of supporting conditioning. An important aspect of the visual CS pathway proposed in the Koutalidis et al. (1988) study is distributed projections of each visual area to different regions of the PN. The important projections were hypothesized to be from the VCTX to the rostral portion of the PN, from both the SC and pretectal nuclei to the dorsolateral PN, and the LGNv projection to the medial pontine nuclei (MPN) (Koutalidis et al. 1988). Lesions of the VCTX were substituted for LGN lesions in the Koutalidis et al. (1988) study due to technical problems with animal survival. The LGNv projection to the MPN was therefore not examined in their combined lesion group. Stimulation of the anterior pretectal nucleus is not a sufficient CS to support eyeblink conditioning (Campolattaro et al. 2007). The direct PN projection from the VCTX is not necessary for CR retention to a light CS, as lesions do not prevent eyeblink conditioning to a light CS in dogs or monkeys (Hilgard and Marquis 1935, 1936). Moreover, lesions of the entire cerebral cortex do not prevent acquisition or retention of delay eyeblink conditioning to a tone or light CS in rabbits (Oakley and Russell 1972, 1977). The LGNv and SC, therefore, are likely sources of visual input to the PN that is necessary for eyeblink conditioning.The current experiment investigated whether information from the LGNv and a visual CS (light) share similar inputs into the MPN and whether those inputs are different from an auditory CS. The visual projections to the MPN were also investigated with the retrograde tracer fluoro-gold (FG) to identify structures that may be involved with the relay of CS information during eyeblink conditioning. In the conditioning experiment, rats received three phases of training, with each phase consisting of three acquisition sessions followed by a muscimol infusion into the MPN, and then a saline recovery session. Each rat received unilateral stimulation of the LGNv (contralateral to the trained eye) during phase 1 of training followed by either a tone or light CS in phases 2 and 3 (order of stimulus presentation was counterbalanced). One group received LGNv stimulation in phase 1 followed by a light CS in phase 2, and a tone CS in phase 3 (SLT). The other group received the tone CS in phase 2, and light CS in phase 3 (STL).  相似文献   

15.
Eyelid conditioning has proven useful for analysis of learning and computation in the cerebellum. Two variants, delay and trace conditioning, differ only by the relative timing of the training stimuli. Despite the subtlety of this difference, trace eyelid conditioning is prevented by lesions of the cerebellum, hippocampus, or medial prefrontal cortex (mPFC), whereas delay eyelid conditioning is prevented by cerebellar lesions and is largely unaffected by forebrain lesions. Here we test whether these lesion results can be explained by two assertions: (1) Cerebellar learning requires temporal overlap between the mossy fiber inputs activated by the tone conditioned stimulus (CS) and the climbing fiber inputs activated by the reinforcing unconditioned stimulus (US), and therefore (2) trace conditioning requires activity that outlasts the presentation of the CS in a subset of mossy fibers separate from those activated directly by the CS. By use of electrical stimulation of mossy fibers as a CS, we show that cerebellar learning during trace eyelid conditioning requires an input that persists during the stimulus-free trace interval. By use of reversible inactivation experiments, we provide evidence that this input arises from the mPFC and arrives at the cerebellum via a previously unidentified site in the pontine nuclei. In light of previous PFC recordings in various species, we suggest that trace eyelid conditioning involves an interaction between the persistent activity of delay cells in mPFC-a putative mechanism of working memory-and motor learning in the cerebellum.Eyelid conditioning is a form of associative learning that has proven useful for mechanistic studies of learning (Thompson 1986). All variants of eyelid conditioning involve pairing a conditioned stimulus (CS, typically a tone) with a reinforcing unconditioned stimulus (US, mild electrical stimulation near the eye) to promote learned eyelid closure in response to the CS (also known as a conditioned response). Delay eyelid conditioning, where the CS and US overlap in time (Fig. 1A , left), is largely unaffected by forebrain lesions (Solomon et al. 1986; Mauk and Thompson 1987; Kronforst-Collins and Disterhoft 1998; Weible et al. 2000; Powell et al. 2001; McLaughlin et al. 2002) and engages the cerebellum relatively directly (but see Halverson and Freeman 2006). Presentation of the tone and the US are conveyed to the cerebellum via activation of mossy fibers and climbing fibers, respectively (Fig. 1B; Mauk et al. 1986; Steinmetz et al. 1987, 1989; Sears and Steinmetz 1991; Hesslow 1994; Hesslow et al. 1999). In addition, output via a cerebellar deep nucleus is required for the expression of conditioned responses (McCormick and Thompson 1984). This relatively direct mapping of stimuli onto inputs and of output onto behavior makes delay eyelid conditioning a powerful tool for the analysis of cerebellar learning and computation (Mauk and Donegan 1997; Medina and Mauk 2000; Medina et al. 2000, 2002; Hansel et al. 2001; Ohyama et al. 2003).Open in a separate windowFigure 1.The procedures, neural pathways, and putative signals involved in delay and trace eyelid conditioning. (A) Stimulus timing for delay (left) and trace (right) training trials. For delay conditioning, the US overlaps in time with the tone CS. In this and subsequent figures, green is used to indicate the presentation of the CS for delay conditioning. For trace conditioning, the US is presented after CS offset, and “trace interval” refers to the period between CS offset and US onset. For convenience, we used red and maroon regions to represent the CS and trace interval, respectively. Sample conditioned eyelid responses are shown below, for which an upward deflection indicates closure of the eyelid. (B) Schematic representation of the pathways engaged by delay conditioning. The CS and US, respectively, engage mossy fibers and climbing fibers relatively directly, and forebrain input is not required for normal learning. (C) The signals hypothesized to engage the cerebellum during trace conditioning. The activity of mossy fibers directly activated by the tone CS does not significantly outlast the stimulus. Thus, a forebrain structure is thought to provide an input that overlaps in time with the US and is necessary to produce cerebellar learning.Trace eyelid conditioning, where the US is presented after tone offset (Fig. 1A, right), has attracted interest for its potential to reveal the nature of interactions between the forebrain and cerebellum as well as the learning mechanisms within these systems. This potential stems from the sensitivity of trace conditioning not only to lesions of cerebellum but also to lesions of hippocampus, medial prefrontal cortex (mPFC), or mediodorsal thalamic nucleus (Woodruff-Pak et al. 1985; Moyer Jr. et al. 1990; Kronforst-Collins and Disterhoft 1998; Weible et al. 2000; Powell et al. 2001; McLaughlin et al. 2002; Powell and Churchwell 2002; Simon et al. 2005). Given the general inability of forebrain lesions to affect delay conditioning, these results have promoted the general interpretation that the forebrain and cerebellum interact to mediate trace conditioning (Weiss and Disterhoft 1996; Clark and Squire 1998; Clark et al. 2002).Here we test the specific hypotheses that (Fig. 1C) (1) cerebellar learning requires that mossy fiber and climbing fiber inputs overlap in time (or nearly so) and (2) that cerebellar learning in trace conditioning occurs in response to a forebrain-driven mossy fiber input that outlasts the CS to overlap with the US rather than the inputs activated by the tone CS (Clark et al. 2002). The data provide direct support for both assertions and, together with recent anatomical studies (Buchanan et al. 1994; Weible et al. 2007), reveal a pathway between the mPFC and cerebellum that is necessary for the expression of trace eyelid responses. When combined with previous recordings from PFC in primates and rodents (Funahashi et al. 1989; Bodner et al. 1996; Fuster et al. 2000; Narayanan and Laubach 2006), these data support the hypothesis that trace eyelid conditioning is mediated by interactions between working memory-related persistent activity in mPFC and motor learning mechanisms in the cerebellum.  相似文献   

16.
The hippocampus has been proposed to support a cognitive map, a mental representation of the spatial layout of an environment as well as the nonspatial items encountered in that environment. In the present study, we recorded simultaneously from 43 to 61 hippocampal pyramidal cells as rats performed an object recognition memory task in which novel and repeated objects were encountered in different locations on a circular track. Multivariate analyses of the neural data indicated that information about object identity was represented secondarily to the primary information dimension of object location. In addition, the neural data related to performance on the recognition memory task. The results suggested that objects were represented as points of interest on the hippocampal cognitive map and that this map was useful in remembering encounters with particular objects in specific locations.The hippocampus plays an important role in spatial memory for both humans and rodents (O''Keefe 1999; Burgess et al. 2002). Findings from many studies in rodents indicate that the hippocampus supports memory for locations referenced to external landmarks, a capacity that O''Keefe and Nadel (1978) described over 30 yr ago as a “cognitive map” (using a term they borrowed from Tolman 1948). In the time since that pioneering thesis, it has become clear that the rodent hippocampus is also important for nonspatial memory (Eichenbaum et al. 1999). Damage to the rat hippocampus (defined here as CA fields, dentate gyrus, and subiculum) leads to impairments on nonspatial tasks, including object recognition memory (Clark et al. 2000; Fortin et al. 2004), transitive odor associations (Bunsey and Eichenbaum 1996), memory for temporal order (Fortin et al. 2002; Kesner et al. 2002), and social transmission of food preference (Alvarez et al. 2001; Clark et al. 2002).The circuitry by which information arrives at and exits from the hippocampus is consistent with the idea that the hippocampus is important for both spatial and nonspatial memory. In both rats and macaques, detailed anatomical studies have indicated that spatial information arrives at the hippocampus via the postrhinal cortex (parahippocampal cortex in primates) and the medial entorhinal cortex, whereas nonspatial information takes a path largely through the perirhinal cortex and lateral entorhinal cortex (Witter and Amaral 1991; Suzuki and Amaral 1994; Witter et al. 2000). Thus, the hippocampus is ideally situated to combine spatial and nonspatial information in the service of remembering item–location associations (Manns and Eichenbaum 2006).Single-unit recording studies in the rat hippocampus have largely focused on the spatial correlates of hippocampal pyramidal neuron firing rates. Fewer studies have investigated nonspatial correlates of hippocampal activity during memory tasks for nonspatial items. However, in one such study, Wood et al. (1999) found that some individual hippocampal pyramidal neurons responded to particular odors and that others responded to particular odors in specific locations during an odor recognition memory task. Thus, activity of individual cells appeared to contain information about nonspatial items as well as spatial locations.An important question is how the activity of individual hippocampal neurons combine to represent item–location associations as a neural ensemble. In particular, how is an encounter with an object in a particular location represented in the pattern of spiking among many hippocampal pyramidal neurons? How might this representation relate to memory for the object or for the location? In the present study, we recorded simultaneously from 43 to 61 hippocampal pyramidal cells as rats performed an object recognition memory task in which novel and repeated objects were encountered in different locations on a circular track. Multivariate analyses of the neural data indicated that information about object identity was represented secondarily to the primary information dimension of object location. In addition, the analyses indicated that the neural data related to performance on the recognition memory task. The results suggest that objects were represented as points of interest on the hippocampal cognitive map and that this map was useful in remembering encounters with particular objects in specific locations.  相似文献   

17.
A current controversy in memory research concerns whether recognition is supported by distinct processes of familiarity and recollection, or instead by a single process wherein familiarity and recollection reflect weak and strong memories, respectively. Recent studies using receiver operating characteristic (ROC) analyses in an animal model have shown that manipulations of the memory demands can eliminate the contribution of familiarity while sparing recollection. Here it is shown that a different manipulation, specifically the addition of a response deadline in recognition testing, results in the opposite performance pattern, eliminating the contribution of recollection while sparing that of familiarity. This dissociation, combined with the earlier findings, demonstrates that familiarity and recollection are differentially sensitive to specific memory demands, strongly supporting the dual process view.Receiver operating characteristic (ROC) analysis holds the promise of dissecting the contributions to recognition memory of episodic recollection and familiarity (Yonelinas 2001), and this method can be applied equally well to examine these memory processes in animals as well as humans (Fortin et al. 2004; Sauvage et al. 2008). According to the dual process model, recollection is indexed by the asymmetry of the ROC function whereas familiarity is measured by the degree of curvilinearity of that function, and correspondingly, these two parameters can vary independently (Yonelinas 2001). However, there is controversy about this interpretation of ROC components. Some have argued that the asymmetry and curvilinearity of the ROC function both reflect the strength of memories mediated by a single process (Wixted 2007), and correspondingly, these components of the ROC increase or decrease together in stronger or weaker memories, respectively (Squire et al. 2007).A resolution of this controversy can be advanced by examining whether the ROC asymmetry and curvilinearity are independently influenced by task manipulations that favor either recollection or familiarity, consistent with dual process theory, or instead are similarly influenced by conditions that affect memory strength. Recent data from an animal model of recognition have shown that adding a demand for remembering associations between independent stimuli eliminates the ROC curvilinearity without affecting the asymmetry, consistent with the dual process view (Sauvage et al. 2008; for discussion of associative recognition, see Mayes et al. 2007). However, in order to provide compelling evidence of independence of the two ROC components, it is also critical to show that other memory demands that favor familiarity produce the opposite pattern, elimination of the ROC asymmetry while sparing its curvilinearity. Together these findings would constitute a double dissociation between the two parameters of the ROC function that cannot be explained by a single process theory.As originally conceived in models proposed in the 1970s, familiarity is characterized as a perceptually driven, pattern matching process that is completed rapidly, whereas recollection is characterized as a conceptually driven, organizational process that requires more time (Mandler 1972; Atkinson and Juola 1973, 1974; for reviews, see Yonelinas 2002; Mandler 2008). Consistent with this view, the results of several studies that employ response deadlines in the test phase report that familiarity is more rapid than recollection. For example, forcing people to make speeded recognition responses has little effect on simple yes–no recognition but strikingly reduces performance when subjects must remember where or when an item was studied (Yonelinas and Jacoby 1994; Gronlund et al. 1997; Hintzman et al. 1998). Other studies that require subjects to oppose familiarity and recollection reveal a two-component temporal function that includes a rapidly available familiarity process and a slower recollective process (Dosher 1984; Gronlund and Ratcliff 1989; Hintzman and Curran 1994; McElree et al. 1999). In addition, studies that measure brain evoked response potentials (ERPs) have revealed two distinct ERP modulations commonly observed during recognition: a mid-frontal negativity onsetting about 400 msec after stimulus onset that is associated with familiarity, and a parietally distributed positivity beginning about 500 msec after stimulus onset that is associated with recollection (Smith 1993; Duzel et al. 1997; Curran 2004; Duarte et al. 2006; Woodruff et al. 2006; but see Voss and Paller 2009).Dual process theory predicts that applying an appropriate early response deadline should allow sufficient time for contribution of familiarity but not that of recollection, and so should reduce the ROC asymmetry while sparing its curvilinearity, opposite to the already observed effects of associative memory demands that favor recollection (Sauvage et al. 2008). Confirmation of this prediction combined with the previous findings of the opposite effects in associative recognition would constitute a double dissociation between the features of recollection and familiarity. This result would therefore strongly support the conclusion that the asymmetry and curvilinearity are independent parameters of the ROC function that are differentially linked to features of recollection and familiarity, respectively.  相似文献   

18.
We examined the roles of the amygdala and hippocampus in the formation of emotionally relevant memories using an ethological model of conditioned fear termed conditioned defeat (CD). Temporary inactivation of the ventral, but not dorsal hippocampus (VH, DH, respectively) using muscimol disrupted the acquisition of CD, whereas pretraining VH infusions of anisomycin, a protein synthesis inhibitor, failed to block CD. To test for a functional connection between the VH and basolateral amygdala (BLA), we used a classic functional connectivity design wherein injections are made unilaterally in brain areas either on the same or opposite sides of the brain. A functional connection between the BLA and VH necessary for the acquisition of CD could not be found because unilateral inactivation of either BLA alone (but not either VH alone) was sufficient to disrupt CD. This finding suggested instead that there may be a critical functional connection between the left and right BLA. In our final experiment, we infused muscimol unilaterally in the BLA and assessed Fos immunoreactivity on the contralateral side following exposure to social defeat. Inactivation of either BLA significantly reduced defeat-induced Fos immunoreactivity in the contralateral BLA. These experiments demonstrate for the first time that whereas the VH is necessary for the acquisition of CD, it does not appear to mediate the plastic changes underlying CD. There also appears to be a critical interaction between the two BLAs such that bilateral activation of this brain area must occur in order to support fear learning in this model, a finding that is unprecedented to date.Our laboratory has taken a novel approach to examine the behavioral and physiological changes that accompany social experience by studying a striking behavioral response that is exhibited following social defeat. When a Syrian hamster is paired with a larger, more aggressive opponent and is defeated, it subsequently becomes highly submissive and fails to defend its own home cage even against a smaller, nonaggressive intruder. We call this change in the behavior of the defeated hamster conditioned defeat (CD) (Portegal et al. 1993) and believe that it is a valuable model with which to study neural and behavioral plasticity following exposure to a biologically relevant stressor.One of the critical structures subserving CD is the amygdala; temporary inactivation of its major subnuclei, including the basolateral amygdala (BLA), blocks the acquisition of CD (Jasnow and Huhman 2001). Together with the findings that protein synthesis inhibition in the BLA effectively disrupts CD (Markham and Huhman 2008) and that overexpression of cAMP response element binding protein (CREB) in the BLA enhances CD (Jasnow et al. 2005), the data support the hypothesis that the BLA is a critical site for plasticity related to CD.One brain region that we have largely overlooked, but which receives considerable attention for its role in learning and memory, is the hippocampus. Several groups have now gathered anatomical and behavioral data demonstrating functionally specific dissociation between the dorsal (DH) and ventral (VH) regions of the hippocampus (Risold and Swanson 1996; Moser and Moser 1998; Bannerman et al. 2004; McEown and Treit 2009). While the DH is critical for spatial relationships (O''Keefe and Nadel 1978; Moser et al. 1993; Eichenbaum 1996) and has been shown to play an important role in social recognition in hamsters (Lai et al. 2005), the VH appears to be involved in the production of behaviors produced in response to aversive stimuli (Trivedi and Coover 2004; Pentkowski et al. 2006).Considering how critically important the hippocampus and amygdala are in relation to fear and memory, some studies are beginning to suggest that these areas may functionally interact to modulate memory function (Akirav and Richter-Levin 2002; McGaugh et al. 2002; McGaugh 2004; Vouimba et al. 2007). The BLA projects to the hippocampus (Amaral and Insausti 1992), and high-frequency stimulation of the BLA combined with tetanic stimulation of the perforant pathway facilitates hippocampal long-term potentiation (LTP) (Ikegaya et al. 1996). Additionally, electrolytic lesions of the VH produce a deficit in the acquisition of fear to a contextual conditioned stimulus, and NMDA lesions of the BLA cause a nonselective deficit in the acquisition of fear to both contextual and acoustic conditioned stimuli (Maren and Fanselow 1995). Although our laboratory has previously demonstrated that the BLA is critically involved in the acquisition of CD (Jasnow and Huhman 2001), the role of the hippocampus has yet to be investigated. The aim of the present study was to examine whether the VH and DH are involved in mediating CD and also to determine whether there is a functional interaction between the hippocampus and the amygdala in the acquisition of CD.  相似文献   

19.
After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry. After fear conditioning and extinction to an auditory conditioned stimulus (CS), rats were presented with the extinguished CS in either the extinction context or a second context, and then sacrificed. Presentation of the CS in the extinction context yielded low levels of conditioned freezing and induced c-Fos expression in the infralimbic division of the medial prefrontal cortex, the intercalated nuclei of the amygdala, and the dentate gyrus (DG). In contrast, presentation of the CS outside of the extinction context yielded high levels of conditioned freezing and induced c-Fos expression in the prelimbic division of the medial prefrontal cortex, the lateral and basolateral nuclei of the amygdala, and the medial division of the central nucleus of the amygdala. Hippocampal areas CA1 and CA3 exhibited c-Fos expression when the CS was presented in either context. These data suggest that the context specificity of extinction is mediated by prefrontal modulation of amygdala activity, and that the hippocampus has a fundamental role in contextual memory retrieval.Considerable interest has emerged in recent years in the neural mechanisms underlying the associative extinction of learned fear (Maren and Quirk 2004; Myers et al. 2006; Quirk and Mueller 2008). Notably, extinction is a useful model for important aspects of exposure-based therapies for the treatment of human anxiety disorders such as panic disorder and post-traumatic stress disorder (PTSD) (Bouton et al. 2001, 2006). During extinction, a conditioned stimulus (CS) is repeatedly presented in the absence of the unconditioned stimulus (US), a procedure that greatly reduces the magnitude and probability of the conditioned response (CR). After the extinction of fear, there is substantial evidence that extinction does not erase the original fear memory, but results in a transient inhibition of fear. For example, extinguished fear responses return after the mere passage of time (i.e., spontaneous recovery) or after a change in context (i.e., renewal) (Bouton et al. 2006; Ji and Maren 2007). In other words, extinguished fear is context specific. The return of fear after extinction is a considerable challenge for maintaining long-lasting fear suppression after exposure-based therapies (Rodriguez et al. 1999; Hermans et al. 2006; Effting and Kindt 2007; Quirk and Mueller 2008).In the last several years, considerable progress has been made in understanding the neural mechanisms underlying the context specificity of fear extinction. For example, lesions or inactivation of the hippocampus prevent the renewal of fear when an extinguished CS is presented outside of the extinction context (Corcoran and Maren 2001, 2004; Corcoran et al. 2005; Ji and Maren 2005, 2008; Hobin et al. 2006). In addition, neurons in the basolateral complex of the amygdala exhibit context-specific spike firing to extinguished CSs (Hobin et al. 2003; Herry et al. 2008), and this requires hippocampal input (Maren and Hobin 2007). Indeed, amygdala neurons that fire more to extinguished CSs outside of the extinction context are monosynaptically excited by hippocampal stimulation (Herry et al. 2008). In contrast, neurons that responded preferentially to extinguished CSs in the extinction context receive synaptic input from the medial prefrontal cortex (Herry et al. 2008).The prevalent theory of the interactions between the prefrontal cortex, hippocampus, and amygdala that lead to regulation of fear by context assumes that when animals experience an extinguished CS in the extinction context, the hippocampus drives prefrontal cortex inhibition of the amygdala to suppress fear (Hobin et al. 2003; Maren and Quirk 2004; Maren 2005). When animals encounter an extinguished CS outside of the extinction context, the hippocampus is posited to inhibit the prefrontal cortex and thereby promote amygdala activity required to renew fear. The hippocampus may also drive fear renewal through its direct projections to the basolateral amygdala (Herry et al. 2008). Although this model accounts for much of the extant literature on the context specificity of extinction, it is not known whether the nodes of this hypothesized neural network are coactive during the retrieval of fear and extinction memories. As a first step in addressing this issue, we used ex vivo c-Fos immunohistochemistry (e.g., Knapska et al. 2007) to generate a functional map of the neural circuits involved in the contextual retrieval of fear memory after extinction. Our results reveal reciprocal activity in prefrontal-amygdala circuits involved in extinction and renewal and implicate the hippocampus in hierarchical control of contextual memory retrieval within these circuits.  相似文献   

20.
The nucleus accumbens (NAc) plays a role in hedonic reactivity to taste stimuli. Learning can alter the hedonic valence of a given stimulus, and it remains unclear how the NAc encodes this shift. The present study examined whether the population response of NAc neurons to a taste stimulus is plastic using a conditioned taste aversion (CTA) paradigm. Electrophysiological and electromyographic (EMG) responses to intraoral infusions of a sucrose (0.3 M) solution were made in naïve rats (Day 1). Immediately following the session, half of the rats (n = 6; Paired) received an injection of lithium chloride (0.15 M; i.p.) to induce malaise and establish a CTA while the other half (n = 6; Unpaired) received a saline injection. Days later (Day 5), NAc recordings during infusions of sucrose were again made. Electrophysiological and EMG responses to sucrose did not differ between groups on Day 1. For both groups, the majority of sucrose responsive neurons exhibited a decrease in firing rate (77% and 71% for Paired and Unpaired, respectively). Following conditioning, in Paired rats, EMG responses were indicative of aversion. Moreover, the majority of responsive NAc neurons now exhibited an increase in firing rate (69%). Responses in Unpaired rats were unchanged by the experience. Thus, the NAc differentially encodes the hedonic value of the same stimulus based on learned associations.Our search for sustenance and pleasurable stimuli is often balanced by our desire to avoid punishment and harm. Similarly, neural systems responsible for generating approach behavior must be countered by signals that suppress approach behavior under contexts where approach is dangerous or maladaptive (Hoebel et al. 2007). The nucleus accumbens (NAc) is acutely involved in food intake and goal-directed, approach behavior. Pharmacological manipulations of the NAc promote food intake even in sated rats (Maldonado-Irizarry and Kelley 1995; Stratford and Kelley 1997). Lesions or inactivation of the NAc impair conditioned approach behavior (Cardinal et al. 2002; Blaiss and Janak 2009). Interestingly, drugs that lead to inhibition of select regions of the NAc increase positive hedonic responses to palatable taste solutions (Pecina and Berridge 2005). Recordings from individual NAc neurons have mirrored these findings. We and others have shown that consumption of palatable food stimuli is associated with decreases in the firing rate of the majority of responsive NAc neurons (Nicola et al. 2004b; Roitman et al. 2005; Taha and Fields 2005; Wheeler et al. 2008). In addition, decreases in NAc neural activity are associated with bouts of licking behavior for palatable stimuli (Taha and Fields 2006), and disruption of these decreases halt feeding bouts (Krause et al. 2010). Finally, decreases in NAc neural activity are associated with preferred locations previously paired with drug reward (German and Fields 2007). Thus, decreases in NAc activity appear to be closely linked to positive hedonic stimuli, stimuli that have been explicitly paired with them and behavioral approach.The NAc is also responsive to aversive stimuli (Carlezon and Thomas 2009; Levita et al. 2009). The delivery of aversive taste stimuli to rats is associated with increases in the firing rate of the majority of responsive NAc neurons (Roitman et al. 2005; Wheeler et al. 2008). In addition to responding to primary appetitive and aversive taste stimuli, NAc neurons develop responses to predictors of reward and aversion. Individual NAc neurons selectively encode cues that predict either appetitive (Roitman et al. 2005; Day et al. 2006) or aversive (Roitman et al. 2005) stimuli following purely Pavlovian conditioning or a combination of instrumental and Pavlovian conditioning (Setlow et al. 2003; Nicola et al. 2004a). NAc neurons come to encode departure from locations not associated with reward with the majority response being that of excitation (German and Fields 2007). Thus, NAc neurons appear to encode aversive stimuli and withdrawal behavior with increases in activity. These and other findings have led to the recent postulation that reward and aversion are differentially encoded by the activity of NAc neurons (Carlezon and Thomas 2009).Data supportive of the activity hypothesis (Carlezon and Thomas 2009) have been generated by the use of different stimuli to serve as appetitive or aversive primary or predictive stimuli. Thus, selective encoding could be biased by the sensory properties of each stimulus rather than their hedonic valence. When a novel, palatable taste is paired with visceral malaise, a Pavlovian association is made and a conditioned taste aversion (CTA) is established. Subsequent exposure to the once palatable stimulus is met with avoidance or aversion and rejection (Garcia et al. 1974; Schafe et al. 1995). Thus, the same taste stimulus can either be appetitive or aversive, depending on Pavlovian associations. Here, individual NAc neurons were recorded in rats (Paired) before (Day 1) and after a CTA (Day 5) was established and compared with rats that received equal exposure to the same stimuli but in an unpaired manner (Unpaired), and hence no CTA developed. Simultaneously, oro-motor behavior was characterized to provide an index of the associative strength of the taste stimulus. Using this paradigm, we determined that the population response of the NAc does indeed encode hedonic valence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号