首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In hippocampal CA1 neurons of wild-type mice, delivery of a standard tetanus (100 pulses at 100 Hz) or a train of low-frequency stimuli (LFS; 1000 pulses at 1 Hz) to a naive input pathway induces, respectively, long-term potentiation (LTP) or long-term depression (LTD) of responses, and delivery of LFS 60 min after tetanus results in reversal of LTP (depotentiation, DP), while LFS applied 60 min before tetanus suppresses LTP induction (LTP suppression). To evaluate the role of the type 1 inositol-1,4,5-trisphosphate receptor (IP3R1) in hippocampal synaptic plasticity, we studied LTP, LTD, DP, and LTP suppression of the field excitatory postsynaptic potentials (EPSPs) in the CA1 neurons of mice lacking the IP3R1. No differences were seen between mutant and wild-type mice in terms of the mean magnitude of the LTP or LTD induced by a standard tetanus or LFS. However, the mean magnitude of the LTP induced by a short tetanus (10 pulses at 100 Hz) was significantly greater in mutant mice than in wild-type mice. In addition, DP or LTP suppression was attenuated in the mutant mice, the mean magnitude of the responses after delivery of LFS or tetanus being significantly greater than in wild-type mice. These results suggest that, in hippocampal CA1 neurons, the IP3R1 is involved in LTP, DP, and LTP suppression but is not essential for LTD. The facilitation of LTP induction and attenuation of DP and LTP suppression seen in mice lacking the IP3R1 indicates that this receptor plays an important role in blocking synaptic potentiation in hippocampal CA1 neurons.  相似文献   

2.
CPEB-1 is a sequence-specific RNA binding protein that stimulates the polyadenylation-induced translation of mRNAs containing the cytoplasmic polyadenylation element (CPE). Although CPEB-1 was identified originally in Xenopus oocytes, it has also been found at postsynaptic sites of hippocampal neurons where, in response to N-methyl-D-aspartate receptor activation, it is thought to induce the polyadenylation and translation of alphaCaMKII and perhaps other CPE-containing mRNAs. Because some forms of synaptic modification appear to be influenced by local (synaptic) protein synthesis, we examined long-term potentiation (LTP) in CPEB-1 knockout mice. Although the basal synaptic transmission of Schaffer collateral-CA1 neurons was not affected in the knockout mice, we found that there was a modest deficit in LTP evoked by a single train of 100 Hz stimulation, but a greater deficit in LTP evoked by one train of theta-burst stimulation. In contrast, LTP evoked by either four trains of 100 Hz stimulation or five trains of theta-burst stimulation were not or were only modestly affected, respectively. The deficit in LTP evoked by single stimulation in knockout mice appeared several minutes after tetanic stimulation. Long-term depression (LTD) evoked by 1 Hz stimulation was moderately facilitated; however, a stronger and more enduring form of LTD induced by paired-pulse 1 Hz stimulation was unaffected. These data suggest that CPEB-1 contributes in the translational control of mRNAs that is critical only for some selected forms of LTP and LTD.  相似文献   

3.
The induction of long-term potentiation (LTP) and long-term depression (LTD) at excitatory synapses in the hippocampus can be strongly modulated by patterns of synaptic stimulation that otherwise have no direct effect on synaptic strength. Likewise, patterns of synaptic stimulation that induce LTP or LTD not only modify synaptic strength but can also induce lasting changes that regulate how synapses will respond to subsequent trains of stimulation. Collectively known as metaplasticity, these activity-dependent processes that regulate LTP and LTD induction allow the recent history of synaptic activity to influence the induction of activity-dependent changes in synaptic strength and may thus have an important role in information storage during memory formation. To explore the cellular and molecular mechanisms underlying metaplasticity, we investigated the role of metaplasticity in the induction of LTP by υ-frequency (5-Hz) synaptic stimulation in the hippocampal CA1 region. Our results show that brief trains of υ-frequency stimulation not only induce LTP but also activate a process that inhibits the induction of additional LTP at potentiated synapses. Unlike other forms of metaplasticity, the inhibition of LTP induction at potentiated synapses does not appear to arise from activity-dependent changes in NMDA receptor function, does not require nitric oxide signaling, and is strongly modulated by β-adrenergic receptor activation. Together with previous findings, our results indicate that mechanistically distinct forms of metaplasticity regulate LTP induction and suggest that one way modulatory transmitters may act to regulate synaptic plasticity is by modulating metaplasticity.  相似文献   

4.
In area CA1 of hippocampal slices which are allowed to recover from slicing "in interface" and where recordings are carried out in interface, a single 1-sec train of 100-Hz stimulation triggers a short-lasting long-term potentiation (S-LTP), which lasts 1-2 h, whereas multiple 1-sec trains induce a long-lasting LTP (L-LTP), which lasts several hours. Moreover, the threshold and the features of these LTP depend on the history of the neurons, a phenomenon known as metaplasticity. Here, where all recordings were performed in interface, we found that allowing the slices to recover "in submersion" had dramatic metaplastic effects. In these conditions, a single 1-sec train at 100 Hz induced an L-LTP which lasted at least 4 h and was dependent on protein synthesis. Interestingly, this type of metaplasticity was observed when the concentration of Mg(++) used was 1.0 mM but not when it was 1.3 mM. The LTP induced by four 1-sec trains at 100 Hz was similar whatever the incubation method. However, the signaling cascades recruited to achieve that pattern were different. In the interface-interface paradigm (recovery and recording both in interface) the four-train induced LTP recruited the PKA signaling pathway but not that of the p42/44MAPK. On the contrary, in the submersion-interface paradigm the four-train induced LTP recruited the p42/44MAPK signaling pathway but not that of the PKA. To our knowledge this is the first example of metaplasticity involving the recruitment of signaling cascades in LTP.  相似文献   

5.
Long-term potentiation (LTP) and depression (LTD) are considered as cellular models for learning and memory. We studied the impact of holeboard training on LTP in the rat CA1 hippocampal region. In 7-week-old Wistar rats a recording electrode was chronically implanted into the hippocampal pyramidal cell layer of the CA1 of the right hemisphere and a stimulation electrode into the contralateral CA3 region.Two groups of animals received a spatial holeboard training of 10 or 15 trials over 2 days on a fixed pattern of baited holes. The last trial was performed 15 min after a primed burst stimulation of the contralateral CA3, which resulted in LTP in the ipsilateral CA1. A pseudo-trained group that received a 10 trial training with changing patterns of baited holes after each trial and a group that remained in the recording chambers during the experiments served as controls. Experimental rats significantly improved their spatial performance with increasing numbers of trials, indicated by decreasing times to pick up all food pellets and by decreasing numbers of reference memory errors. A learning-related impairment of CA1-LTP measured in both the population-spike amplitude as well as the fEPSP could be noted. These results show that specific (pattern-training), but not unspecific (pseudo-training) spatial information processing prior to electrical stimulation can severely affect LTP in hippocampal area CA1.  相似文献   

6.
The current study employed aged and young male Fischer 344 rats to examine the relationship between long-term depression (LTD), age, and memory. Memory performance was measured on two tasks that are sensitive to hippocampal function; inhibitory avoidance and spatial discrimination on the Morris water maze. The slope of the extracellular excitatory postsynaptic field potential was recorded from CA3-CA1 synapses in hippocampal slices. Low frequency stimulation (LFS) induced a modest LTD only in aged animals under standard recording conditions. The decrease in synaptic transmission examined only in aged animals correlated with memory scores on the spatial task and LTD was not observed in aged animals with the highest memory scores. LTD induction was facilitated by increasing the Ca(2+)/Mg(2+) ratio of the recording medium or employing a paired-pulse stimulation paradigm. Age differences disappeared when LFS was delivered under conditions of elevated Ca(2+)/Mg(2+) in the recording medium. Using multiple induction episodes under conditions which facilitate LTD-induction, no age-related difference was observed in the maximum level of LTD. The results indicate that the increased susceptibility to LTD induction is associated with impaired memory and results from a shift in the induction process. The possible relationship between LTD and memory function is discussed.  相似文献   

7.
The c-kit receptor tyrosine kinase encoded by the white-spotting (W) gene is highly expressed in rat hippocampal CA1–CA4 regions. We found an impaired spatial learning and memory in homozygous c-kit (Ws/Ws) mutant rats that have a 12-base deletion in the tyrosine kinase domain of the c-kit gene and a very low kinase activity. Electrophysiological studies in hippocampal slices revealed that the long-term potentiation (LTP) induced by the tetanic stimulation (100 Hz, 1 sec) in the mossy fiber (MF)–CA3 pathway, but not in the Schaffer collaterals/commissural–CA1 pathway, was significantly reduced in c-kit mutants compared with wild-type (+/+) rats. The paired-pulse facilitation (PPF) was measured before the tetanus and after the establishment of the LTP in each slice. The initial PPF in the MF–CA3 pathway positively correlated with the amplitude of the LTP in the wild-type rats but not in the c-kit mutant rats. Furthermore, they failed to show the normal characteristics observed in the MF–CA3 pathway of +/+ rats; that is, the negative correlation between the initial PPF and the changes in PPF measured after the LTP. These findings suggest an involvement of SCF/c-kit signaling in hippocampal synaptic potentiation and spatial learning and memory.  相似文献   

8.
The dentate gyrus (DG) is among the few areas in the mammalian brain where production of new neurons continues in the adulthood. Although its functional significance is not completely understood, several lines of evidence suggest the role of DG neurogenesis in learning and memory. Considering that long-term potentiation (LTP) is a prime candidate for the process underlying hippocampal learning and memory, these results raise the possibility that LTP and neurogenesis are closely related. Here, we investigated whether or not LTP induction in the afferent pathway triggers enhanced proliferation of progenitor cells in the DG. LTP was induced by tetanic stimulation in perforant path-DG synapses in one hemisphere, and the number of newly generated progenitor (BrdU-labeled) cells in the DG was quantified. Compared with the control hemisphere (stimulated with low-frequency pulses), the LTP-induced hemisphere contained a significantly higher number of newly generated progenitor cells in the dorsal as well as ventral DG. When CPP, an NMDA receptor antagonist, was administered, tetanic stimulation neither induced LTP nor enhanced progenitor cell proliferation, indicating that NMDA receptor activation, rather than tetanic stimulation per se, is responsible for enhanced progenitor proliferation in the control animal. Our results show that tetanic stimulation of perforant path sufficient to induce LTP increases progenitor proliferation in adult DG in an NMDA receptor-dependent manner.  相似文献   

9.
Persistent, bidirectional changes in synaptic signaling (that is, potentiation and depression of the synapse) can be induced by the precise timing of individual pre- and postsynaptic action potentials. However, far less attention has been paid to the ability of paired trains of action potentials to elicit persistent potentiation or depression. We examined plasticity following the pairing of spike trains in the touch mechanosensory neuron (T cell) and S interneuron (S cell) in the medicinal leech. Long-term potentiation (LTP) of T to S signaling was elicited when the T-cell spike train preceded the S-cell train. An interval 0 to +1 sec between the T- and S-cell spike trains was required to elicit long-term potentiation (LTP), and this potentiation was NMDA receptor (NMDAR)-dependent. Long-term depression (LTD) was elicited when S-cell activity preceded T-cell activity and the interval between the two spike trains was -0.2 sec to -10 sec. This surprisingly broad temporal window involved two distinct cellular mechanisms; an NMDAR-mediated LTD (NMDAR-LTD) when the pairing interval was relatively brief (<-1 sec) and an endocannabinoid-mediated LTD (eCB-LTD) when longer pairing intervals were used (-1 to -10 sec). This eCB-LTD also required activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor, presynaptic Ca(2+) release from intracellular stores and activation of voltage-gated Ca(2+) channels (VGCCs). These findings demonstrate that the pairing of spike trains elicits timing-dependent forms of LTP and LTD that are supported by a complex set of cellular mechanisms involving NMDARs and endocannabinoid activation of TRPV-like receptors.  相似文献   

10.
The Specific Role of cGMP in Hippocampal LTP   总被引:5,自引:2,他引:3       下载免费PDF全文
Previous results have suggested that cGMP is involved in hippocampal long-term potentiation (LTP), perhaps as the presynaptic effector of a retrograde messenger. However, other studies have failed to replicate some of those results, making the role of cGMP uncertain. We therefore reexamined this question and identified several variables that can affect the contribution of cGMP. First, brief perfusion with 8-Br–cGMP before weak tetanic stimulation produced long-lasting potentiation in the CA1 region of hippocampal slices, but more prolonged perfusion with 8-Br–cGMP before the tetanus did not produce long-lasting potentiation. Second, the activity-dependent long-lasting potentiation by cGMP analogs was reduced when NMDA receptors were completely blocked, indicating that NMDA receptor activation contributes to, but is not required for, the potentiation. The amount of reduction of the potentiation differed with different protocols, and in some cases could be complete. Third, LTP produced by strong tetanic stimulation in the stratum radiatum of CA1 (which expresses eNOS) was blocked by inhibitors of soluble guanylyl cyclase or cGMP-dependent protein kinase, but LTP in the stratum oriens (which does not express eNOS) was not. The results of these experiments should help to explain some of the discrepant findings from previous studies, and, in addition, may provide insights into the mechanisms and functional role of the cGMP-dependent component of LTP.  相似文献   

11.
Recent studies demonstrate a requirement for the Extracellular signal Regulated Kinase (ERK) mitogen-activated protein kinase (MAPK) cascade in both the induction of long-lasting forms of hippocampal synaptic plasticity and in hippocampus-dependent associative and spatial learning. In the present studies, we investigated mechanisms by which ERK might contribute to synaptic plasticity at Schaffer collateral synapses in hippocampal slices. We found that long-term potentiation (LTP) induced with a pair of 100-Hz tetani does not require ERK activation in mice whereas it does in rats. However, in mice, inhibition of ERK activation blocked LTP induced by two LTP induction paradigms that mimicked the endogenous θ rhythm. In an additional series of studies, we found that mice specifically deficient in the ERK1 isoform of MAPK showed no impairments in tests of hippocampal physiology. To investigate ERK-dependent mechanisms operating during LTP-inducing stimulation paradigms, we monitored spike production in the cell body layer of the hippocampus during the period of θ-like LTP-inducing stimulation. θ-burst stimulation (TBS) produced a significant amount of postsynaptic spiking, and the likelihood of spike production increased progressively over the course of the three trains of TBS independent of any apparent increase in Excitatory Post-Synaptic Potential (EPSP) magnitude. Inhibition of ERK activation dampened this TBS-associated increase in spiking. These data indicate that, for specific patterns of stimulation, ERK may function in the regulation of neuronal excitability in hippocampal area CA1. Overall, our data indicate that the progressive increase in spiking observed during TBS represents a form of physiologic temporal integration that is dependent on ERK MAPK activity.  相似文献   

12.
Endogenous cyclical changes in the levels of estrogen can have marked effects on hippocampal synaptic plasticity. In two experiments, we examined the effect of chronic estrogen loss and replacement following ovariectomy on the induction of bidirectional changes in synaptic plasticity in the CA1 region in vivo. In Experiment 1, ovariectomy carried out either 5 days or 5 weeks before testing impaired the induction of long-term depression (LTD) and but not long-term potentiation (LTP). In Experiment 2, chronic estrogen replacement (0.2 ml of 10 microg injection of 17beta-estradiol every 48 h) over the course of 5 weeks enhanced the magnitude of paired-pulse-induced LTD in the CA1 region but had no effect on the induction of LTP. The results demonstrate that acute and chronic estrogen deprivation disrupted dynamic synaptic plasticity processes in the hippocampal CA1 region and that this disruption was ameliorated by chronic estrogen replacement. The findings are discussed with reference to: (1) the contribution of Ca(2+) regulated synaptic signalling pathways in the CA1 region to estradiol modulation of LTP and LTD and (2) the potential functional significance of ovariectomy-induced changes in synaptic plasticity for learning and memory processes.  相似文献   

13.
The effectiveness of tetraethylammonium (TEA) and high-frequency stimulation (HFS) in inducing long-term synaptic modification is compared in CA1 and dentate gyrus (DG) in vitro. High-frequency stimulation induces long-term potentiation (LTP) at synapses of both perforant path-DG granule cell and Schaffer collateral-CA1 pyramidal cell pathways. By contrast, TEA (25 mM) induces long-term depression in DG while inducing LTP in CA1. The mechanisms underlying the differential effect of TEA in CA1 and DG were investigated. It was observed that T-type voltage-dependent calcium channel (VDCC) blocker, Ni2+ (50 microM), partially blocked TEA-induced LTP in CA1. A complete blockade of the TEA-induced LTP occurred when Ni2+ was applied together with the NMDA receptor antagonist, D-APV. The L-type VDCC blocker, nifidipine (20 microM), had no effect on CA1 TEA-induced LTP. In DG of the same slice, TEA actually induced long-term depression (LTD) instead of LTP, an effect that was blocked by D-APV. Neither T-type nor L-type VDCC blockade could prevent this LTD. When the calcium concentration in the perfusion medium was increased, TEA induced a weak LTP in DG that was blocked by Ni2+. During exposure to TEA, the magnitude of field EPSPs was increased in both CA1 and DG, but the increase was substantially greater in CA1. Tetraethylammonium application also was associated with a large, late EPSP component in CA1 that persisted even after severing the connections between CA3 and CA1. All of the TEA effects in CA1, however, were dramatically reduced by Ni2+. The results of this study indicate that TEA indirectly acts via both T-type VDCCs and NMDA receptors in CA1 and, as a consequence, induces LTP. By contrast, TEA indirectly acts via only NMDA receptors in DG and results in LTD. The results raise the possibility of a major synaptic difference in the density and/or distribution of T-type VDCCs and NMDA receptors in CA1 and DG of the rat hippocampus.  相似文献   

14.
Extensive research suggests that long-term potentiation (LTP) may serve as a cellular mechanism for memory and that alterations in synaptic plasticity may underlie the gross memory impairments observed in patients with Alzheimer's disease. Cholinergic facilitation of hippocampal LTP in the behaving rat is a useful model for the study of the effects of anticholinesterase or other drugs on synaptic plasticity. Field excitatory postsynaptic potentials were recorded from the hippocampal CA1 region following excitation of the basal dendrites in behaving male Long-Evans rats. LTP was induced by a high-frequency train (200 Hz for 0.5s duration) following injection of the acetylcholinesterase inhibitor eserine sulfate (0.5 mg/kg, i.p.), specific muscarinic M1 receptor antagonist pirenzepine (21.2 microg/microl, i.c.v.), or saline (i.p. or i.c.v.). Pirenzepine was found to block basal-dendritic LTP when LTP was induced during walking, but not when LTP was induced during immobility. Eserine facilitated LTP when induction occurred during either immobility or walking. The present study demonstrates that an anticholinesterase enhances LTP in CA1 of the behaving rat, and that facilitation of basal-dendritic LTP during walking is mediated by muscarinic M1 receptors.  相似文献   

15.
The induction of hippocampal theta rhythm using low-frequency septal stimulation has been shown to proactively (1) facilitate the acquisition and (2) increase resistance to extinction of a food-rewarded fixed-ratio (FR) bar-press response (Holt & Gray, Quarterly Journal of Experimental Psychology, 35B, 97-118, 1983). Both (1) and (2) are also seen after septal lesions. This suggests that Holt and Gray's (1983) results may have been due either to stimulation-produced theta waves (the "theta" hypothesis), or a small septal lesion produced by the stimulating current (the "lesion" hypothesis). Both hypotheses were tested in the present experiment using high-frequency septal stimulation. In one of two treatment conditions male Sprague-Dawley rats, chronically implanted with a bilateral septal stimulating electrode and a unilateral bipolar hippocampal recording electrode, received (1) trains of continuous pulses at 77 Hz which blocked the hippocampal theta rhythm, or (2) trains of pulses at 100 Hz interrupted by a 30-msec interval at a frequency of 7.7 Hz. Control animals were implanted but not stimulated. Acquisition of a discrete-trial bar-press response on a fixed ratio 5 reinforcement schedule immediately followed the treatment phase. After 15 days' acquisition all animals were extinguished over the subsequent 12 days. Results indicated that both types of septal stimulation reduced resistance to extinction of barpressing; theta-blocking stimulation produced the greater effect. Theta-blocking stimulation retarded the acquisition of bar-pressing in the early stages of training. These overall results are exactly opposite to those produced by low-frequency (7.7 Hz) theta-driving septal stimulation (Holt & Gray, 1983) and contrary to the predictions of the lesion hypothesis. Furthermore, these findings support the idea that long-term changes in behavior may depend on stimulation-produced changes in the hippocampal theta rhythm.  相似文献   

16.
Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by a brief 1-Hz paired-pulse stimulation (PP-1 Hz, 1 min). In contrast to L-LTP induced by HFS, the late phase of PP-1 Hz LTP does not exist in young adult animals. Rather, it emerges and becomes enhanced in an age-related way. Thus, in 1.5- to 2-mo-old mice, a brief PP-1 Hz stimulation induces only a short lasting LTP, decaying to baseline in about 90 min. By contrast, PP-1 Hz stimulation induces an enduring and protein synthesis dependent LTP in 12- to 18-mo-old mice. The PP-1 Hz-induced L-LTP is dependent on NMDA receptor activation, requires voltage-dependent calcium channels, and is modulated by dopamine D1/D5 receptors. Because memory ability declines with aging, the age-related enhancement of L-LTP induced by PP-1 Hz stimulation indicates that this form of L-LTP appears to be inversely correlated with memory ability.  相似文献   

17.
The effectiveness of tetraethylammonium (TEA) and high-frequency stimulation (HFS) in inducing long-term synaptic modification is compared in CA1 and dentate gyrus (DG) in vitro. High-frequency stimulation induces long-term potentiation (LTP) at synapses of both perforant path-DG granule cell and Schaffer collateral-CA1 pyramidal cell pathways. By contrast, TEA (25 mM) induces long-term depression in DG while inducing LTP in CA1. The mechanisms underlying the differential effect of TEA in CA1 and DG were investigated. It was observed that T-type voltage-dependent calcium channel (VDCC) blocker, Ni2+ (50 μM), partially blocked TEA-induced LTP in CA1. A complete blockade of the TEA-induced LTP occurred when Ni2+ was applied together with the NMDA receptor antagonist, D-APV. The L-type VDCC blocker, nifidipine (20 μM), had no effect on CA1 TEA-induced LTP. In DG of the same slice, TEA actually induced long-term depression (LTD) instead of LTP, an effect that was blocked by D-APV. Neither T-type nor L-type VDCC blockade could prevent this LTD. When the calcium concentration in the perfusion medium was increased, TEA induced a weak LTP in DG that was blocked by Ni2+. During exposure to TEA, the magnitude of field EPSPs was increased in both CA1 and DG, but the increase was substantially greater in CA1. Tetraethylammonium application also was associated with a large, late EPSP component in CA1 that persisted even after severing the connections between CA3 and CA1. All of the TEA effects in CA1, however, were dramatically reduced by Ni2+. The results of this study indicate that TEA indirectly acts via both T-type VDCCs and NMDA receptors in CA1 and, as a consequence, induces LTP. By contrast, TEA indirectly acts via only NMDA receptors in DG and results in LTD. The results raise the possibility of a major synaptic difference in the density and/or distribution of T-type VDCCs and NMDA receptors in CA1 and DG of the rat hippocampus.  相似文献   

18.
Stress can profoundly affect memory and alter the functioning of the hippocampus and amygdala. Studies have also shown that the antidepressant tianeptine can block the effects of stress on hippocampal and amygdala morphology and synaptic plasticity. We examined the effects of acute predator stress and tianeptine on long-term potentiation (LTP; induced by 100 pulses in 1 s) and primed burst potentiation (PB; a low threshold form of LTP induced by only five physiologically patterned pulses) in CA1 and in the basolateral nucleus (BLA) of the amygdala in anesthetized rats. Predator stress blocked the induction of PB potentiation in CA1 and enhanced LTP in BLA. Tianeptine blocked the stress-induced suppression of PB potentiation in CA1 without affecting the stress-induced enhancement of LTP in BLA. In addition, tianeptine administered under non-stress conditions enhanced PB potentiation in the hippocampus and LTP in the amygdala. These findings support the hypothesis that acute stress impairs hippocampal functioning and enhances amygdaloid functioning. The work also provides insight into the actions of tianeptine with the finding that it enhanced electrophysiological measures of plasticity in the hippocampus and amygdala under stress, as well as non-stress, conditions.  相似文献   

19.
20.
Recent studies focus on the functional significance of a novel form of synaptic plasticity, low-frequency stimulation (LFS)-induced synaptic potentiation in the hippocampal CA1 area. In the present study, we elucidated dynamic changes in synaptic function in the CA1 field during extinction processes associated with context-dependent fear memory in freely moving rats, with a focus on LFS-induced synaptic plasticity. Synaptic transmission in the CA1 field was transiently depressed during each extinction trial, but synaptic efficacy was gradually enhanced by repeated extinction trials, accompanied by decreases in freezing. On the day following the extinction training, synaptic transmission did not show further changes during extinction retrieval, suggesting that the hippocampal synaptic transmission that underlies extinction processes changes in a phase-dependent manner. The synaptic potentiation produced by extinction training was mimicked by synaptic changes induced by LFS (0.5 Hz) in the group that previously received footshock conditioning. Furthermore, the expression of freezing during re-exposure to footshock box was significantly reduced in the LFS application group in a manner similar to the extinction group. These results suggest that LFS-induced synaptic plasticity may be associated with the extinction processes that underlie context-dependent fear memory. This hypothesis was supported by the fact that synaptic potentiation induced by extinction training did not occur in a juvenile stress model that exhibited extinction deficits. Given the similarity between these electrophysiological and behavioral data, LFS-induced synaptic plasticity may be related to extinction learning, with some aspects of neuronal oscillations, during the acquisition and/or consolidation of extinction memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号