首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Auditory trace fear conditioning is a hippocampus-dependent learning task that requires animals to associate an auditory conditioned stimulus (CS) and a fear-producing shock-unconditioned stimulus (US) that are separated by an empty 20-s trace interval. Previous studies have shown that aging impairs learning performance on hippocampus-dependent tasks. This study measured heart rate (HR) and freezing fear responses to determine if aging impairs hippocampus-dependent auditory trace fear conditioning in freely moving rats. Aging and Young rats received one long-trace fear conditioning session (10 trials). Each trial consisted of a tone-CS (5 s) and a shock-US separated by an empty 20-s trace interval. The next day rats received CS-alone retention trials. Young rats showed significantly larger HR and freezing responses on the initial CS-alone retention trials compared to the Aging rats. A control group of aging rats received fear conditioning trials with a short 1-s trace interval separating the CS and US. The Aging Short-Trace Group showed HR and freezing responses on the initial CS alone retention trials that were similar to the Young Long-Trace Group, but greater than the Aging Long-Trace Group. A second aging control group received unpaired CSs and USs, and showed no HR or freezing responses on CS-alone retention trials. These data show that HR and freezing are effective measures for detecting aging-related deficits in trace fear conditioning.  相似文献   

2.
Acute nicotine enhances contextual fear conditioning, whereas withdrawal from chronic nicotine produces impairments. However, the nicotinic acetylcholine receptors (nAChR) that are involved in nicotine withdrawal deficits in contextual fear conditioning are unknown. The present study used genetic and pharmacological techniques to investigate the nAChR subtype(s) involved in the effects of nicotine withdrawal on contextual fear conditioning. beta2 or alpha 7 nAChR subunit knockout (KO) and corresponding wild-type (WT) mice were withdrawn from 12 days of chronic nicotine treatment (6.3mg/kg/day), and trained with 2 conditioned stimulus (CS; 85 dB white noise)--unconditioned stimulus (US; 0.57 mA footshock) pairings on day 13. On day 14, mice were tested for contextual and cued freezing. beta2 KO mice did not show nicotine withdrawal-related deficits in contextual fear conditioning, in contrast to WT mice and alpha 7 KO mice. A follow-up study investigated if nicotine withdrawal disrupts acquisition or recall of contextual fear conditioning. The high affinity nAChR antagonist dihydro-beta-erythroidine (DH beta E; 3mg/kg) was administered prior to training or testing to precipitate withdrawal in chronic nicotine-treated C57BL/6 mice. Deficits in contextual fear conditioning were observed in chronic nicotine-treated mice when DH beta E was administered prior to training, but not when administered at testing. These results indicate that beta2-containing nAChRs, such as the alpha 4 beta 2 receptor, mediate nicotine withdrawal deficits in contextual fear conditioning. In addition, nicotine withdrawal selectively affects acquisition but not recall or expression of the learned response.  相似文献   

3.
Nicotine enhances learning including contextual fear conditioning. The present study extends previous work on nicotine and conditioned fear to examine the nature of nicotine's enhancement of contextual fear conditioning and sex differences in contextual fear conditioning in C57BL/6 mice using a within-subjects design. Mice were trained by pairing of an auditory stimulus of 80 dB, 6 cps train of broad-band clicks conditioned stimulus (CS) with a 2 sec., 0.35 mA shock unconditioned stimulus (US). Twenty-four hours later mice were tested for freezing in the original context, and one hour later mice were retested in the same context. A 0.5 mg/kg dose of nicotine was given either for three conditions: (1) before training, testing, and retesting; (2) before training and retesting; and (3) before retesting only. The use of a within-subjects design allowed for testing if nicotine would produce state-dependent deficits in contextual fear conditioning. Nicotine did enhance contextual fear conditioning in the groups that received nicotine for both training and testing. Nicotine, however, did not alter freezing when given on training but not testing or testing but not training. No sex differences, however, existed for conditioning or for nicotine's effects on conditioning. These results suggest that nicotine enhanced acquisition and retrieval processes but did not produce state-dependent deficits when administered just for training or just for testing.  相似文献   

4.
Nicotine has been demonstrated to enhance learning processes. The present experiments extend these results to examine the effects of nicotine on acquisition and consolidation of contextual and cued fear conditioning, and the duration of nicotine's enhancement of conditioned fear. C57BL/6 mice were trained with two pairings of an auditory CS and a foot shock US. Multiple doses of nicotine were given before or immediately after training and on testing day (0.0, 0.050, 0.125, 0.250, and 0.375 mg/kg, i.p). Freezing to both the context and auditory CS was measured 24h after training and again 1 week after training. Mice did not receive nicotine for the 1-week retest. Nicotine (0.125 and 0.250 mg/kg) given on both training and testing days enhanced freezing to the context at 24h. In addition, elevated freezing to the context was seen 1 week post-training in mice previously treated with 0.125 and 0.250 mg/kg nicotine. Thus, nicotine-treated mice did show elevated levels of freezing when retested 1 week later, even though no nicotine was administered at the 1-week retest. Mice that received nicotine on training day or testing day only and mice that received nicotine with mecamylamine, a nicotinic receptor antagonist, were not different from saline-treated mice. In addition, post-training administration of nicotine did not enhance fear conditioning. The present results indicate that nicotine enhancement of contextual fear conditioning depends on administration of nicotine on training and test days but results in a long-lasting enhancement of memories of contextual fear conditioning that remains in the absence of nicotine.  相似文献   

5.
Nicotine enhances learning including contextual fear conditioning. The present study extends previous work on nicotine and conditioned fear to examine the nature of nicotine’s enhancement of contextual fear conditioning and sex differences in contextual fear conditioning in C57BL/6 mice using a within-subjects design. Mice were trained by pairing of an auditory stimulus of 80 dB, 6 cps train of broad-band clicks conditioned stimulus (CS) with a 2 sec., 0.35 mA shock unconditioned stimulus (US). Twenty-four hours later mice were tested for freezing in the original context, and one hour later mice were retested in the same context. A 0.5 mg/kg dose of nicotine was given either for three conditions: (1) before training, testing, and retesting; (2) before training and retesting; and (3) before retesting only. The use of a within-subjects design allowed for testing if nicotine would produce state-dependent deficits in contextual fear conditioning. Nicotine did enhance contextual fear conditioning in the groups that received nicotine for both training and testing. Nicotine, however, did not alter freezing when given on training but not testing or testing but not training. No sex differences, however, existed for conditioning or for nicotine’s effects on conditioning. These results suggest that nicotine enhanced acquisition and retrieval processes but did not produc state-dependent deficits when administered just for training or just for testing.  相似文献   

6.
Studies usually show better spatial learning in males and stronger emotional memory in females. Spatial memory differences could relate to diverse strategies, while dissimilar stress reactions could cause emotional memory differences. We compared male and female rats in two emotional (classical emotional conditioning and aversive discrimination memory) and two emotionally “neutral” tasks: (1) plus-maze discriminative avoidance, containing two open and two enclosed arms, one of which presenting aversive stimuli (light/noise). No differences were found in learning, retrieving, or basal emotional levels, while only male rats presented extinction of the task; (2) contextual fear conditioning – a cage was paired to mild foot shocks. Upon reexposure, freezing behavior was decreased in females; (3) spontaneous alternation – the animals were expected to alternate among the arms of a four-arm maze. No differences between genders were found and (4) open-field habituation was addressed in an arena which the rats were allowed to explore for 10 min. Habituation was similar between genders. Differences were found only in tasks with strong emotional contexts, where different fear responses and stress effects could be determinant. The lack of extinction of discriminative avoidance by females points out to stronger consolidation and/or impaired extinction of aversive memories.  相似文献   

7.
Muscarinic cholinergic antagonism produces learning and memory deficits in a variety of hippocampal-dependent tasks. Hippocampal lesions produce both acquisition deficits and retrograde amnesia for contextual fear conditioning, but do not impact fear conditioning to discrete cues. In order to examine the effects of muscarinic antagonism in this paradigm, rats were given scopolamine (1 mg/kg) either before or for 3 days after a Pavlovian fear-conditioning session in which tones were paired with aversive footshocks. Fear to the context and the tone was assessed by measuring freezing in separate tests. It was found that pretraining, but not posttraining, scopolamine severely impaired contextual fear conditioning; tone conditioning was not affected under either condition (cf., Young, Bohenek, & Fanselow,Neurobiology of Learning and Memory,63,174–180, 1995).  相似文献   

8.
In this human fear conditioning study, the online development of conditioned US-expectancy to discrete cues and background contexts was measured in two groups. In the paired group (n=30), the CS was systematically followed by an aversive shock (US). In the unpaired group (n=30), CS and US were presented explicitly unpaired. Using US-expectancy ratings, we replicated the basic finding already illustrated in humans with startle modulation. In the paired group, the CS elicited more US-expectancy than the context, whereas in the unpaired group, the context elicited more US-expectancy than the CS. Interestingly, we also observed a trial-by-trial development of conditioning to the context in the unpaired group as indicated by a significant linear trend. This gradual development and the evidence for the role of US-expectancy in contextual fear add to the idea that cued and contextual fear rely on the same basic associative processes.  相似文献   

9.
In Pavlovian fear conditioning, a conditional stimulus (CS, usually a tone) is paired with an aversive unconditional stimulus (US, usually a foot shock) in a novel context. After even a single pairing, the animal comes to exhibit a long-lasting fear to the CS and the conditioning context, which can be measured as freezing, an adaptive defense reaction in mice. Both context and tone conditioning depend on the integrity of the amygdala, and context conditioning further depends on the hippocampus. The reliability and efficiency of the fear conditioning assay makes it an excellent candidate for the screening of learning and memory deficits in mutant mice. One obstacle is that freezing in mice has been accurately quantified only by human observers, using a tedious method that can be subject to bias. In the present study we generated a simple, high-speed, and highly accurate algorithm that scores freezing of four mice simultaneously using NIH Image on an ordinary Macintosh computer. The algorithm yielded a high correlation and excellent linear fit between computer and human scores across a broad range of conditions. This included the ability to score low pretraining baseline scores and accurately mimic the effects of two independent variables (shock intensity and test modality) on fear. Because we used a computer and digital video, we were able to acquire a secondary index of fear, activity suppression, as well as baseline activity scores. Moreover, we measured the unconditional response to shock. These additional measures can enhance the sensitivity of the assay to detect interesting memory phenotypes and control for possible confounds. Thus, this computer-assisted system for measuring behavior during fear conditioning allows for the standardized and carefully controlled assessment of multiple aspects of the fear conditioning experience.  相似文献   

10.
Extensive evidence indicates that the septum plays a predominant role in fear learning, yet the direction of this control is still a matter of debate. Increasing data suggest that the medial (MS) and lateral septum (LS) would be differentially required in fear conditioning depending on whether a discrete conditional stimulus (CS) predicts, or not, the occurrence of an aversive unconditional stimulus (US). Here, using a tone CS-US pairing (predictive discrete CS, context in background) or unpairing (context in foreground) conditioning procedure, we show, in mice, that pretraining inactivation of the LS totally disrupted tone fear conditioning, which, otherwise, was spared by inactivation of the MS. Inactivating the LS also reduced foreground contextual fear conditioning, while sparing the higher level of conditioned freezing to the foreground (CS-US unpairing) than to the background context (CS-US pairing). In contrast, inactivation of the MS totally abolished this training-dependent level of contextual freezing. Interestingly, inactivation of the MS enhanced background contextual conditioning under the pairing condition, whereas it reduced foreground contextual conditioning under the unpairing condition. Hence, the present findings reveal a functional dissociation between the LS and the MS in Pavlovian fear conditioning depending on the predictive value of the discrete CS. While the requirement of the LS is crucial for the appropriate processing of the tone CS-US association, the MS is crucial for an appropriate processing of contextual cues as foreground or background information.  相似文献   

11.
Ethanol has complex effects on memory performance, although hippocampus-dependent memory may be especially vulnerable to disruption by acute ethanol intoxication occurring during or shortly after a training episode. In the present experiments, the effects of post-training ethanol on delay and trace fear conditioning were examined in adolescent rats. In Experiment 1, 30-day-old Sprague-Dawley rats were given delay or trace conditioning trials in which a 10s flashing light CS was paired with a 0.5 mA shock US. For trace groups, the trace interval was 10 s. On days 31-33, animals were administered ethanol once daily (0.0 or 2.5 g/kg via intragastric intubation), and on day 34 animals were tested for CS-elicited freezing. Results showed that post-training ethanol affected the expression of trace, but had no effect on delay conditioned fear. Experiment 2 revealed that this effect was dose-dependent; doses lower than 2.5 g/kg were without effect. Experiment 3 evaluated whether proximity of ethanol to the time of training or testing was critical. Results show that ethanol administration beginning 24h after training was more detrimental to trace conditioned freezing than administration that was delayed by 48 h. Finally, in Experiment 4 animals were trained with one of three different trace intervals: 1, 3 or 10s. Results indicate that post-training administration of 2.5 g/kg ethanol disrupted trace conditioned fear in subjects trained with a 10s, but not with a 1 or 3s, trace interval. Collectively the results suggest that ethanol administration impairs post-acquisition memory processing of hippocampus-dependent trace fear conditioning.  相似文献   

12.
One of the hallmarks of the pathology in Alzheimer's disease is the deposition of amyloid plaques throughout the brain, especially within the hippocampus and amygdala. Transgenic mice that overexpress the Swedish mutation of human amyloid precursor protein (hAPPswe; Tg2576) show age-dependent memory deficits in hippocampus-dependent learning tasks. However, the performance of aged Tg2576 mice in amygdala-dependent learning tasks has not been thoroughly assessed. We trained young (2–4 mo) and old (16–18 mo) Tg2576 and wild-type mice in a T-maze alternation task (hippocampus-dependent) and a Pavlovian fear-conditioning task (amygdala- and hippocampus-dependent). As previously reported, old Tg2576 mice showed impaired acquisition of rewarded alternation; none of these mice reached the criterion of at least five out of six correct responses over three consecutive days. In contrast, old Tg2576 mice showed normal levels of conditional freezing to an auditory conditional stimulus (CS) and acquired a contextual discrimination normally. However, when the salience of the fear-conditioning context was decreased, old (12–14 mo) Tg2576 mice were impaired at acquiring fear to the conditioning context, but not to the tone CS. Histological examination of a subset of the mice verified the existence of amyloid plaques in the cortex, hippocampus, and amygdala of old, but not young, Tg2576 mice. Hence, learning and memory deficits in old Tg2576 mice are limited to hippocampus-dependent tasks, despite widespread amyloid deposition in cortex, hippocampus, and amygdala.  相似文献   

13.
Fear conditioning, including variants such as delay and trace conditioning that depend on different neural systems, is widely used to behaviorally characterize genetically altered mice. We present data from three strains of mice, C57/BL6 (C57), 129/SvlmJ (129), and a hybrid strain of the two (F(1) hybrids), trained on various versions of a trace fear-conditioning protocol. The initial version was taken from the literature but included unpaired control groups to assess nonassociative effects on test performance. We observed high levels of nonassociative freezing in both contextual and cued test conditions. In particular, nonassociative freezing in unpaired control groups was equivalent to freezing shown by paired groups in the tests for trace conditioning. A number of pilot studies resulted in a new protocol that yielded strong context conditioning and low levels of nonassociative freezing in all mouse strains. During the trace-CS test in this protocol, freezing in unpaired controls remained low in all strains, and both the C57s and F(1) hybrids showed reliable associative trace fear conditioning. Trace conditioning, however, was not obtained in the 129 mice. Our findings indicate that caution is warranted in interpreting mouse fear-conditioning studies that lack control conditions to address nonassociative effects. They also reveal a final set of parameters that are important for minimizing such nonassociative effects and demonstrate strain differences across performance in mouse contextual and trace fear conditioning.  相似文献   

14.
15.
In two experiments, the time course of the expression of fear in trace (hippocampus-dependent) versus delay (hippocampus-independent) conditioning was characterized with a high degree of temporal specificity using fear-potentiated startle. In experiment 1, groups of rats were given delay fear conditioning or trace fear conditioning with a 3- or 12-sec trace interval between conditioned stimulus (CS) offset and unconditioned stimulus (US) onset. During test, the delay group showed fear-potentiated startle in the presence of the CS but not after its offset, whereas the trace groups showed fear-potentiated startle both during the CS and after its offset. Experiment 2 compared the time course of fear expression after trace conditioning with the time course in two delay conditioning groups: one matched to the trace conditioning group with respect to CS duration, and the other with respect to ISI. In all groups, fear was expressed until the scheduled occurrence of the US and returned to baseline rapidly thereafter. Thus, in both trace and delay fear conditioning, ISI is a critical determinant of the time course of fear expression. These results are informative as to the possible role of neural structures, such as the hippocampus, in memory processes related to temporal information.  相似文献   

16.
A behavioral technique often used to evaluate the cognitive performance of rats and mice is the fear conditioning paradigm. During conditioned fear experiments, freezing responses shown by rodents after exposure to environmental stimuli previously paired to an aversive experience provide a behavioral index of the animal's associative abilities. The present study examined the ability of a computer-controlled automated Freeze Monitor system for recording immobility behavior in mice. The sensitivity of the automated procedure to detect group differences caused by the application of various training protocols was also evaluated. Statistical analyses revealed significant positive correlations between immobility scores obtained with the automated apparatus and hand-scored data collected by a continuous or a time-sampling method. Behavioral patterns recorded by the computerized system were very similar to those obtained by the hand-scoring methods adopted. In particular, during context testing, exposure to environmental stimuli previously paired with a mild foot shock (unconditioned stimulus [US]) evoked increased immobility behavior in mice conditioned with the US compared with levels of immobility displayed by mice previously confined to the same contextual stimuli without receiving the US. Moreover, although during conditioned stimulus (CS) testing, mice previously exposed to the US displayed high levels of immobility when confined to environmental cues much different from those paired with the US (contextual fear generalization), both hand-scored and automated results revealed the effect of CS–US pairing (increased immobility) only in mice trained to associate the two stimuli (paired group) but not in mice exposed to both CS and US separated by a 40-sec time interval (unpaired group) or in mice receiving only the US (US group) during conditioning sessions. Overall, the results show associative conditioning measured in an automated apparatus and highlight the utility of obtaining both latency as well as beam interruption parameters.  相似文献   

17.
Growth arrest and DNA damage-inducible β (Gadd45b) has been shown to be involved in DNA demethylation and may be important for cognitive processes. Gadd45b is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified Gadd45b as a candidate plasticity-related gene. However, a direct demonstration of a link between Gadd45b and memory has not been established. The current studies first determined whether expression of the Gadd45 family of genes was affected by contextual fear conditioning. Gadd45b, and to a lesser extent Gadd45g, were up-regulated in the hippocampus following contextual fear conditioning, whereas Gadd45a was not. Next, Gadd45b knockout mice were tested for contextual and cued fear conditioning. Gadd45b knockout mice exhibited a significant deficit in long-term contextual fear conditioning; however, they displayed normal levels of short-term contextual fear conditioning. No differences between Gadd45b knockout and wild-type mice were observed in cued fear conditioning. Because cued fear conditioning is hippocampus independent, while contextual fear conditioning is hippocampus dependent, the current studies suggest that Gadd45b may be important for long-term hippocampus-dependent memory storage. Therefore, Gadd45b may be a novel therapeutic target for the cognitive deficits associated with many neurodevelopmental, neurological, and psychiatric disorders.  相似文献   

18.
Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice.  相似文献   

19.
The cannabinoid receptor type 1 (CB1) is abundantly expressed in the central nervous system where it negatively controls the release of several neurotransmitters. CB1 activity plays a crucial role in learning and memory and in synaptic plasticity. In the present study, the role of CB1 was investigated in three different hippocampus-dependent memory tasks and in in vivo hippocampal synaptic plasticity in knockout (CB1-ko) and wildtype mice. There was no difference in short-term and long-term social and object recognition memory between CB1-ko and wildtype mice. In contrast, in background contextual fear conditioning CB1-ko mice showed enhanced freezing levels in the conditioning context and increased generalised contextual fear after a high-intensity conditioning foot shock of 1.5 mA, but not after 0.7 mA. In in vivo field potential recordings in the dentate gyrus, CB1-ko mice displayed a decreased paired-pulse facilitation of the populations spikes, suggesting an altered inhibitory synaptic drive onto hippocampal granule cells. Furthermore, CB1-ko mice displayed significantly higher levels of in vivo long-term potentiation (LTP) in the dentate gyrus. In conclusion, CB1 deficiency leads to enhanced contextual fear memory and altered synaptic plasticity in the hippocampus, supporting the key role of endocannabinoid signalling in learning and memory, in particular following highly aversive encounters.  相似文献   

20.
Five experiments with C57BL/6 mice (Mus musculus) investigated whether failures in shock processing might contribute to deficits in freezing that occur after an animal receives a shock immediately on exposure to a conditioning context. Experiment 1 found that more contextual freezing resulted from delayed shocks than from immediate shocks across 4 shock intensities. Experiment 2 extended the immediate-shock freezing deficit to discrete stimuli. Experiment 3 found that preexposure to the to-be-conditioned cue did not facilitate immediate cued conditioning. Experiment 4 found that context preexposure enhanced context-evoked fear after an immediate shock. Experiment 5 found that context preexposure also enhanced immediate cued conditioning. These findings are problematic for current theories of the immediate-shock freezing deficit that focus exclusively on processing of the conditioned stimulus, and they suggest that failures in shock processing may contribute to the deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号