首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a stop signal paradigm, subjects were instructed to make a saccade to a visual target appearing left or right of the fixation point. In 25% of the trials, an auditory stop signal was presented after a variable delay that required the subject to inhibit the saccade. Observed saccadic response times in stop failure trials were longer than predicted by Logan and Cowan's (1984) race model. Saccadic response time and amplitude decreased with the time between stop signal presentation and saccade execution, suggesting an inhibitory effect between the stop signal and the go signal processes that is not compatible with an independent race assumption. Moreover, countermanding a saccade was more difficult when stop and go signals appeared at the same location.  相似文献   

2.
IMPULSIVITY AND INHIBITORY CONTROL   总被引:19,自引:0,他引:19  
Abstract— We report an experiment testing the hypothesis that impulsive behavior reflects a deficit in the ability to inhibit prepotent responses Specifically, we examined whether impulsive people respond more slowly to signals to inhibit (stop signals) than non-impulsive people In this experiment, 136 undergraduate students completed an impulsivity questionnaire and then participated in a stop-signal experiment, in which they performed a choice reaction time (go) task and were asked to inhibit their responses to the go task when they heard a stop signal The delay between the go signal and the stop signal was determined by a tracking procedure designed to allow subjects to inhibit on 50% of the stop-signal trials. Reaction time to the go signal did not vary with impulsivity, but estimated stop-signal reaction time was longer in more impulsive subjects, consistent with the hypothesis and consistent with results from populations with pathological problems with impulse control.  相似文献   

3.
Saccade stop signal and target step tasks are used to investigate the mechanisms of cognitive control. Performance of these tasks can be explained as the outcome of a race between stochastic go and stop processes. The race model analyses assume that response times (RTs) measured throughout an experimental session are independent samples from stationary stochastic processes. This article demonstrates that RTs are neither independent nor stationary for humans and monkeys performing saccade stopping and target-step tasks. We investigate the consequences that this has on analyses of these data. Nonindependent and nonstationary RTs artificially flatten inhibition functions and account for some of the systematic differences in RTs following different types of trials. However, nonindependent and nonstationary RTs do not bias the estimation of the stop signal RT. These results demonstrate the robustness of the race model to some aspects of nonindependence and nonstationarity and point to useful extensions of the model.  相似文献   

4.
Inhibitory control of eye and hand movements was compared in the stop-signal task. Subjects moved their eyes to the right or left or pressed keys on the right or left in response to visual stimuli. The stimuli were either central (angle brackets pointing left or right) or peripheral (plus signs turning into Xs left or right of fixation), and the task was either pro (respond on the same side as the stimulus) or anti (respond on the opposite side). Occasionally, a stop signal was presented, which instructed subjects to inhibit their responses to the go stimulus. Stop-signal reaction times (SSRTs) were faster overall for eye movements than for hand movements, and they were affected differently by stimulus conditions (central vs. peripheral) and task (pro vs. anti), suggesting that the eyes and hands are inhibited by different processes operating under similar principles (i.e., a race between stop and go processes).  相似文献   

5.
The authors carried out 2 experiments designed to cast light on the locus of redundancy gain in simple visual reaction time by using a stop-signal paradigm. In Experiment 1, the authors found that single visual stimuli were more easily inhibited than double visual stimuli by an acoustic stop signal. This result is in keeping with the idea that redundancy gain occurs prior to the ballistic stage of the stop-signal task. In Experiment 2, the authors found that the response to an acoustic go signal was more easily inhibited by a double than by a single visual stop signal. This result provides conclusive evidence for a redundancy gain in the stop process--in a process that does not involve a motor response but rather its inhibition.  相似文献   

6.
According to the race models of the stop-signal paradigm, stopping success (successful vs. unsuccessful stopping) is attributed to the finishing times of a go and a stop process. In addition to those factors involving processing times, in the present study we sought to use electrophysiological measures to find factors involving activations that could affect stopping success. We hypothesized that voluntarily-generated unimanual preparation would be a factor. To assess voluntarily-generated unimanual preparation in the stop-signal paradigm, we used a selective-stopping task without any precue. The selective-stopping task also allowed us to assess reaction times (RTs) even when stopping was successful. We demonstrated shorter RTs in signal-respond (i.e. unsuccessful stopping) than in signal-inhibit (successful stopping) trials, as is predicted by the race models. More importantly, we also demonstrated different pre-signal lateralized readiness potentials between the two types of trials and larger lateralized mu ERD in signal-respond than in signal-inhibit trials, suggesting that voluntarily-generated unimanual preparation affects stopping success. In addition to what is described in the race models of the stop-signal paradigm, the present results therefore demonstrated measures of pre-signal activations that could influence stopping success.  相似文献   

7.
The aim of this study was to examine the effects of frequency of occurrence of stop signals in the stop-signal paradigm. Presenting stop signals less frequently resulted in faster reaction times to the go stimulus and a lower probability of inhibition. Also, go stimuli elicited larger and somewhat earlier P3 responses when stop signals occurred less frequently. Since the amplitude effect was more pronounced on trials when go signals were followed by fast than slow reactions, it probably reflected a stronger set to produce fast responses. N2 and P3 components to stop signals were observed to be larger and of longer latency when stop signals occurred less frequently. The amplitude enhancement of these N2 and P3 components were more pronounced for unsuccessful than for successful stop-signal trials. Moreover, the successfully inhibited stop trials elicited a frontocentral P3 whereas unsuccessfully inhibited stop trials elicited a more posterior P3 that resembled the classical P3b. P3 amplitude in the unsuccessfully inhibited condition also differed between waveforms synchronized with the stop signal and waveforms synchronized with response onset whereas N2 amplitude did not. Taken together these findings suggest that N2 reflected a greater significance of failed inhibitions after low probability stop signals while P3 reflected continued processing of the erroneous response after response execution.  相似文献   

8.
Performance in the stop-signal paradigm involves a balance between going and stopping, and one way that this balance is struck is through shifting priority away from the go task, slowing responses after a stop signal, and improving the probability of inhibition. In 6 experiments, the authors tested whether there is a corresponding shift in priority toward the stop task, speeding reaction time to the stop signal. Consistent with this hypothesis, stop-signal reaction time (SSRT) decreased on the trial immediately following a stop signal in each experiment. Experiments 2-4 used 2 very different stop signals within a modality, and stopping improved when the stop stimulus repeated and alternated. Experiments 5 and 6 presented stop signals in different modalities and showed that SSRT improved only when the stop stimulus repeated within a modality. These results demonstrate within-modality post-stop-signal speeding of response inhibition.  相似文献   

9.
The medial right frontal cortex is implicated in fast stopping of an initiated motor action in the stop-signal task (SST). To assess whether this region is also involved in the slower behavioural inhibition induced by goal conflict, we tested for effects of goal conflict (when stop and go tendencies are balanced) on low-frequency rhythms in the SST. Stop trials were divided, according to the delays at which the stop signal occurred, into short-, intermediate-, and long-delay trials. Consistent with goal-conflict processing, intermediate-delay trials were associated with greater 7–8 Hz EEG power than short- or long-delay trials at medial right frontal sites (Fz, F4, and F8). At F8, 7–8 Hz power was linked to high trait anxiety and neuroticism. A separate 4–7 Hz power increase was also seen in stop, relative to go, trials, but this was independent of delay, was maximal at the central midline site Cz, and predicted faster stopping. Together with previous data on the SST, these results suggest that the right frontal region could be involved in multiple inhibition mechanisms. We propose a hierarchical model of the control of stopping that integrates the literature on the neural control of fast motor stopping with that on slower, motive-directed behavioural inhibition.  相似文献   

10.
Response inhibition is frequently investigated using the stop-signal paradigm, where participants perform a two-choice response time task that is occasionally interrupted by a stop signal instructing them to withhold their response. Stop-signal performance is formalized as a race between a go and a stop process. If the go process wins, the response is executed; if the stop process wins, the response is inhibited. Successful inhibition requires fast stop responses and a high probability of triggering the stop process. Existing methods allow for the estimation of the latency of the stop response, but are unable to identify deficiencies in triggering the stop process. We introduce a Bayesian model that addresses this limitation and enables researchers to simultaneously estimate the probability of trigger failures and the entire distribution of stopping latencies. We demonstrate that trigger failures are clearly present in two previous studies, and that ignoring them distorts estimates of stopping latencies. The parameter estimation routine is implemented in the BEESTS software (Matzke et al., Front. Quantitative Psych. Measurement, 4, 918; 2013a) and is available at http://dora.erbe-matzke.com/software.html.  相似文献   

11.
Executive control requires controlling the initiation of movements, judging the consequences of actions, and adjusting performance accordingly. We have investigated the role of different areas in the frontal lobe in executive control expressed by macaque monkeys performing a saccade stop signal task. Certain neurons in the frontal eye field respond to visual stimuli, and others control the production of saccadic eye movements. Neurons in the supplementary eye field do not control directly the initiation of saccades but, instead, signal the production of errors, the anticipation and delivery of reinforcement, and the presence of response conflict. Neurons in the anterior cingulate cortex signal the production of errors and the anticipation and delivery of reinforcement, but not the presence of response conflict. Intracranial local field potentials in the anterior cingulate cortex of monkeys indicate that these medial frontal signals can contribute to event-related potentials related to performance monitoring. Electrical stimulation of the supplementary eye field improves performance in the task by elevating saccade latency. An interactive race model shows how interacting units produce behavior that can be described as the outcome of a race between independent processes and how conflict between gaze-holding and gaze-shifting neurons can be used to adjust performance.  相似文献   

12.
This article reports four experiments on the ability to inhibit responses in simple and choice reaction time (RT) tasks. Subjects responding to visually presented letters were occasionally presented with a stop signal (a tone) that told them not to respond on that trial. The major dependent variables were (a) the probability of inhibiting a response when the signal occurred, (b) mean and standard deviation (SD) of RT on no-signal trials, (c) mean RT on trials on which the signal occurred but subjects failed to inhibit, and (d) estimated RT to the stop signal. A model was proposed to estimated RT to the stop signal and to account for the relations among the variables. Its main assumption is that the RT process and the stopping process race, and response inhibition depends on which process finishes first. The model allows us to account for differences in response inhibition between tasks in terms of transformations of stop-signal delay that represent the relative finishing times of the RT process and the stopping process. The transformations specified by the model were successful in group data and in data from individual subjects, regardless of how delays were selected. The experiments also compared different methods of selecting stop-signal delays to equate the probability of inhibition in the two tasks.  相似文献   

13.
The forcefulness of key press responses was measured in stop-all and selective stopping versions of the stop-signal paradigm. When stop signals were presented too late for participants to succeed in stopping their responses, response force was nonetheless reduced relative to trials in which no stop signal was presented. This effect shows that peripheral motor aspects of primary task responses can still be influenced by inhibition even when the stop signal arrives too late to prevent the response. It thus requires modification of race models in which responses in the presence of stop signals are either stopped completely or produced normally, depending on whether the responding or stopping process finishes first.  相似文献   

14.
Response inhibition is an important cognitive-control function that allows for already-initiated or habitual behavioral responses to be promptly withheld when needed. A typical paradigm to study this function is the stop-signal task. From this task, the stop-signal response time (SSRT) can be derived, which indexes how rapidly an already-initiated response can be canceled. Typically, SSRTs range around 200 ms, identifying response inhibition as a particularly rapid cognitive-control process. Even so, it has recently been shown that SSRTs can be further accelerated if successful response inhibition is rewarded. Since this earlier study effectively ruled out differential preparatory (proactive) control adjustments, the reward benefits likely relied on boosted reactive control. Yet, given how rapidly such control processes would need to be enhanced, alternative explanations circumventing reactive control are important to consider. We addressed this question with an fMRI study by gauging the overlap of the brain networks associated with reward-related and response-inhibition-related processes in a reward-modulated stop-signal task. In line with the view that reactive control can indeed be boosted swiftly by reward availability, we found that the activity in key brain areas related to response inhibition was enhanced for reward-related stop trials. Furthermore, we observed that this beneficial reward effect was triggered by enhanced connectivity between task-unspecific (reward-related) and task-specific (inhibition-related) areas in the medial prefrontal cortex (mPFC). The present data hence suggest that reward information can be translated very rapidly into behavioral benefits (here, within ~200 ms) through enhanced reactive control, underscoring the immediate responsiveness of such control processes to reward availability in general.  相似文献   

15.
The stop-signal paradigm is the premier metric of behavioral inhibition in contemporary attention-deficit/hyperactivity disorder (ADHD) research. The stop-signal paradigm’s choice-reaction time component, however, arguably places greater demands on working memory processes (e.g., controlled-focused attention) relative to alternative inhibition metrics (i.e., go/no-go (GNG) tasks), and consequently obscures conclusions about inhibition and working memory deficits in affected children. The current study, therefore, aimed to determine whether shared variance between stop-signal behavioral inhibition and working memory performance in children with ADHD reflects overlap between the working memory and inhibition constructs or insufficient specificity of the stop-signal paradigm. Fifty-five children (8–12 years) with and without ADHD were administered established phonological (PH) and visuospatial (VS) working memory measures, as well as stop-signal and GNG tasks that vary with respect to demands on controlled-focused attention. Although working memory and GNG performance each uniquely predicted children’s inattention, stop-signal task performance was not a significant predictor of unique variance in inattention, above and beyond variance associated with working memory. Collectively, these findings suggest that performance on the stop-signal task, compared to the GNG task, is confounded by greater demands associated with working memory and consequently reflects an impure estimate of the inhibition construct.  相似文献   

16.
It has been suggested that mental rehearsal activates brain areas similar to those activated by real performance. Although inhibition is a key function of human behavior, there are no previous reports of brain activity during imagined response cancellation. We analyzed event-related potentials (ERPs) and time–frequency data associated with motor execution and inhibition during real and imagined performance of a stop-signal task. The ERPs characteristic of stop trials—that is, the stop-N2 and stop-P3—were also observed during covert performance of the task. Imagined stop (IS) trials yielded smaller stop-N2 amplitudes than did successful stop (SS) and unsuccessful stop (US) trials, but midfrontal theta power similar to that in SS trials. The stop-P3 amplitude for IS was intermediate between those observed for SS and US. The results may be explained by the absence of error-processing and correction processes during imagined performance. For go trials, real execution was associated with higher mu and beta desynchronization over motor areas, which confirms previous reports of lower motor activation during imagined execution and also with larger P3b amplitudes, probably indicating increased top-down attention to the real task. The similar patterns of activity observed for imagined and real performance suggest that imagination tasks may be useful for training inhibitory processes. Nevertheless, brain activation was generally weaker during mental rehearsal, probably as a result of the reduced engagement of top-down mechanisms and limited error processing.  相似文献   

17.
The ability to inhibit an unfolding action is usually investigated using a stop signal (or gostop) task. The data from the stop-signal task are often described using a horse-race model whose key assumption is that each process (i.e., go, stop) exhibits stochastic independence. Using three variations of a coincident-timing task (i.e., go, gostop, and gostopgo) we extend previous considerations of stochastic independence by analysing the go latencies for prior effects of stopping. On random trials in the gostopgo task the signal sweep was paused for various times at various distances before the target. Significant increases in latency errors were reported on those trials on which the signal was paused (p <.005). Further analyses of the pause trials revealed significant effects for both the stopping interval (p <.001) and the pause interval (p <.05). Tukey post hoc analyses demonstrated increased latency errors as a linear function of the stopping interval, as expected, and decreased latency errors as a nonlinear function of the pause interval. These latter results indicate that the latencies of the go process, as reflected in the latency errors, may not exhibit stochastic independence under certain conditions. Various control mechanisms were considered in an attempt to explain these data.  相似文献   

18.
Motor inhibition is considered to be an important process of executive control and to be implicated in numerous activities in order to cancel prepared actions and, supposedly, to suppress ongoing ones. Usually, it is evaluated using a “stop-signal task” in which participants have to inhibit prepared discrete movements. However, it is unknown whether other movement types involve the same inhibition process. We therefore investigated whether the inhibition process for discrete movements is involved in stopping ongoing rhythmic movements as well.Twenty healthy adults performed two counterbalanced tasks. The first task was used to estimate the stop-signal reaction time (SSRTd) needed to inhibit prepared discrete key-pressing movements. In the second task, participants drew graphic patterns on a tablet and had to stop the movement when a stop-signal occurred. We calculated the rhythmic stop signal-reaction time as the time needed to initiate stopping such ongoing rhythmic movement (SSRTr) and the same latency relative to the period of the rhythmic movement (relSSRTr). We measured these delays under different movement frequencies and motor coordination conditions and further investigated whether they varied as a function of several parameters of the rhythmic movements (speed, mean and variance of the relative phase, and movement phase at several time events).We found no correlation between inhibition measures in the two tasks. In contrast, generalized linear models showed a moderate yet significant influence of the motion parameters on the inhibition of ongoing rhythmic movements. We therefore conclude that the motor inhibition processes involved in cancelling prepared discrete movements and stopping ongoing rhythmic movements are dissimilar.  相似文献   

19.
王振宏  刘亚  蒋长好 《心理学报》2013,45(5):546-555
情绪的动机维度模型认为, 积极情绪对认知加工的影响受其趋近动机强度的调节, 高、低趋近动机积极情绪对认知加工的影响不同。本研究运用情绪图片诱发被试高、低趋近动机积极情绪, 采用停止信号任务和任务转换作业考察了不同趋近动机强度积极情绪对认知控制的影响。结果发现:(1)与中性条件相比, 高趋近动机积极情绪促进了停止信号任务中Go任务和任务转换作业中重复任务的反应执行。(2)在停止信号任务中, 相对于中性条件, 低趋近动机积极情绪条件下的停止信号反应时显著缩短; 在任务转换作业中, 低趋近动机积极情绪条件下的反应时转换损失和错误率转换损失均显著降低, 而高趋近动机积极情绪条件下的反应时转换损失显著增加。因此, 积极情绪对认知控制的影响受其趋近动机强度的调节, 即低趋近动机积极情绪增强认知灵活性, 提高停止反应与任务转换的速度; 而高趋近动机积极情绪增强认知稳定性, 加快停止信号任务中Go任务和任务转换作业中重复任务的反应执行, 增加了反应时转换损失。  相似文献   

20.
This review discusses whether deficient inhibitory motor control is the core deficit of attention-deficit/hyperactivity disorder (ADHD). Inhibitory motor control is commonly assessed using the stop-signal paradigm. Since the last meta-analysis that was performed, 33 new studies have appeared. The current meta-analysis revealed a significant difference between ADHD patients and matched controls in stop latency (stop-signal reaction time) in both children and adults. Basic reaction time was significantly longer in children with ADHD, but not in adults, and there was a significant interaction between the elongation of the latency to stop and to respond in adults, but not in children. Deficient inhibitory motor control may be less crucial in children than in adults with ADHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号