首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximately linear relationships were observed between contrast, spatial frequency, temporal frequency, or velocity of stimulation and perceived velocity of curvilinear vection—that is, a visually induced self-motion in a curved path. Similarly, linear relationships were also found between the perceived degree of curvature of curvilinear vection and spatial frequency or velocity of stimulation. Since the perceived velocity of curvilinear vection varies with contrast, spatial frequency, temporal frequency, and angular velocity, and the perceived degree of curvature of curvilinear vection varies only with spatial frequency and angular velocity, peripheral vision is not sufficient for computing accurately the curvilinear component of induced self-motion in a curved path. Concurrently, it was shown that the perceived direction of curvilinear vection is not always unambiguously perceived (Sauvan & Bonnet, 1989). Consequently, it is suggested that two different types of visual processing, which involve the peripheral or the central vision, underlie the processing of curvilinear vection.  相似文献   

2.
Bonato F  Bubka A 《Perception》2006,35(1):53-64
The effects of visual field color and spatial complexity on self-motion perception were investigated by placing observers inside a large rotating cylinder (optokinetic drum). Under optokinetic-drum conditions visually induced self-motion (vection) is typically perceived within 30 s, even though all forms of sensory input (eg vestibular, proprioceptive, auditory), except vision, indicate that the observer is stationary. It was hypothesized that vection would be hastened and vection magnitude increased by adding chromatic colors and spatial complexity to the lining of an optokinetic drum. Addition of these visual-field characteristics results in an array that shares more visual-field characteristics with our typical environment that usually serves as a stable frame of reference regarding self-motion perception. In the color experiment, participants viewed vertical stripes that were: (i) black and white, (ii) various gray shades, or (iii) chromatic. In the spatial complexity experiment, participants were presented with: (i) black-and-white vertical stripes, or (ii) a black-and-white checkerboard pattern. Drum rotation velocity was 5 rev. min(-1) (30 degrees s(-1)), and both vection onset and magnitude were measured for 60 s trials. Results indicate that chromaticity and spatial complexity hasten the onset of vection and increase its perceived magnitude. Chromaticity and spatial complexity are common characteristics of the environments in which our visual system evolved. The presence of these visual-field features in an optic flow pattern may be treated as an indicator that the scene being viewed is stationary and that the observer is moving.  相似文献   

3.
The effects of the size of a stimulus and its eccentricity (central or peripheral) on the visually induced perception of horizontal translational self-motion (vection) were investigated. The central and peripheral areas of the observers' visual field were simultaneously stimulated by random dot patterns that moved in opposite directions. The results of two experiments indicated that the effects of central and peripheral presentations of the moving visual pattern are equivalent, and that vection strength is determined by the stimulus size and speed but not by its eccentricity. These results are consistent with the findings of previous studies that suggested that there are no qualitative differences in the vection-inducing potentials of the central and peripheral areas of the visual field, and are counter to the more traditional hypothesis, which has assumed that the perception of self-motion is specifically assigned to peripheral vision.  相似文献   

4.
Bubka A  Bonato F  Palmisano S 《Perception》2008,37(5):704-711
When stationary observers view an optic-flow pattern, visually induced self-motion perception (vection) and a form of motion sickness known as simulator sickness (SS), can result. Previous results suggest that an expanding flow pattern leads to more SS than a contracting pattern. Sensory conflict, a possible cause of SS, may be more salient when an expanding optic-flow pattern is viewed. An experiment was conducted to test if a more salient sensory conflict accompanying expanding flow patterns might inhibit vection. Participants (n = 15) viewed a pattern of blue squares, either steadily expanded or contracted, on a large rear-projection screen. Vection onset and magnitude were measured for 30 s with a computer-interfaced slide device. Vection onset was significantly faster, and vection magnitude stronger, when a contracting pattern was viewed. We propose that our extensive experience with forward self-motion may form a neural expectancy (exposure-history) about the sensory inputs which typically accompany expanding flow. However, since backward self-motion is less common, there may be a weaker exposure-history for contracting flow, and as a result these patterns generate less salient sensory conflict and subsequently less vection.  相似文献   

5.
Palmisano S  Chan AY 《Perception》2004,33(8):987-1000
Both coherent perspective jitter and explicit changing-size cues have been shown to improve the vection induced by radially expanding optic flow. We examined whether these stimulus-based vection advantages could be modified by altering cognitions and/or expectations about both the likelihood of self-motion perception and the purpose of the experiment. In the main experiment, participants were randomly assigned into two groups-one where the cognitive conditions biased participants towards self-motion perception and another where the cognitive conditions biased them towards object-motion perception. Contrary to earlier findings by Lepecq et al (1995 Perception 24 435-449), we found that identical visual displays were less likely to induce vection in 'object-motion-bias' conditions than in 'self-motion bias' conditions. However, significant jitter and size advantages for vection were still found in both cognitive conditions (cognitive bias effects were greatest for non-jittering same-size control displays). The current results suggest that if a sufficiently large vection advantage can be produced when participants are expecting to experience self-motion, it is likely to persist in object-motion-bias conditions.  相似文献   

6.
Nakamura S  Seno T  Ito H  Sunaga S 《Perception》2010,39(12):1579-1590
The effects of dynamic colour modulation on vection were investigated to examine whether perceived variation of illumination affects self-motion perception. Participants observed expanding optic flow which simulated their forward self-motion. Onset latency, accumulated duration, and estimated magnitude of the self-motion were measured as indices of vection strength. Colour of the dots in the visual stimulus was modulated between white and red (experiment 1), white and grey (experiment 2), and grey and red (experiment 3). The results indicated that coherent colour oscillation in the visual stimulus significantly suppressed the strength of vection, whereas incoherent or static colour modulation did not affect vection. There was no effect of the types of the colour modulation; both achromatic and chromatic modulations turned out to be effective in inhibiting self-motion perception. Moreover, in a situation where the simulated direction of a spotlight was manipulated dynamically, vection strength was also suppressed (experiment 4). These results suggest that observer's perception of illumination is critical for self-motion perception, and rapid variation of perceived illumination would impair the reliabilities of visual information in determining self-motion.  相似文献   

7.
Nakamura S  Shimojo S 《Perception》1999,28(7):893-902
The effects of a foreground stimulus on vection (illusory perception of self-motion induced by a moving background stimulus) were examined in two experiments. The experiments reveal that the presentation of a foreground pattern with a moving background stimulus may affect vection. The foreground stimulus facilitated vection strength when it remained stationary or moved slowly in the opposite direction to that of the background stimulus. On the other hand, there was a strong inhibition of vection when the foreground stimulus moved slowly with, or quickly against, the background. These results suggest that foreground stimuli, as well as background stimuli, play an important role in perceiving self-motion.  相似文献   

8.
Slowly moving foreground induces an illusory self-motion perception in the same direction as its motion direction (inverted vection). In this study, the effects of motion type of the foreground stimulus on inverted vection were investigated using a sample of 3 men and 1 woman. As indices of perceived strength of the inverted vection, duration and estimated magnitude were measured. Analysis of the psychophysical experiment indicated that a translating foreground induced inverted linear vection in the same direction as the stimulus motion. However, a rotating foreground did not induce an inverted roll vection. Statistical analyses indicate that there is a significant difference between two foreground motion conditions (Duration: t3=14.54, p <.01; Estimation: t3=16.92, p<.01). This result supports the hypothesis that eye-movement information is responsible for the occurrence of inverted vection.  相似文献   

9.
S Palmisano  B Gillam 《Perception》1998,27(9):1067-1077
While early research suggested that peripheral vision dominates the perception of self-motion, subsequent studies found little or no effect of stimulus eccentricity. In contradiction to these broad notions of 'peripheral dominance' and 'eccentricity independence', the present experiments showed that the spatial frequency of optic flow interacts with its eccentricity to determine circular vection magnitude--central stimulation producing the most compelling vection for high-spatial-frequency stimuli and peripheral stimulation producing the most compelling vection for lower-spatial-frequency stimuli. This interaction appeared to be due, in part at least, to the effect that the higher-spatial-frequency moving pattern had on subjects' ability to organise optic flow into related motion about a single axis. For example, far-peripheral exposure to this high-spatial-frequency pattern caused many subjects to organise the optic flow into independent local regions of motion (a situation which clearly favoured the perception of object motion not self-motion). It is concluded that both high-spatial-frequency and low-spatial-frequency mechanisms are involved in the visual perception of self-motion--with their activities depending on the nature and eccentricity of the motion stimulation.  相似文献   

10.
Illusory self-motion (vection) is thought to be determined by motion in the peripheral visual field, whereas stimulation of more central retinal areas results in object-motion perception. Recent data suggest that vection can be produced by stimulation of the central visual field provided it is configured as a more distant surface. In this study vection strength (tracking speed, onset latency, and the percentage of trials where vection was experienced) and the direction of self-motion produced by displays moving in the central visual field were investigated. Apparent depth, introduced by using kinetic occlusion information, influenced vection strength. Central displays perceived to be in the background elicited stronger vection than identical displays appearing in the foreground. Further, increasing the eccentricity of these displays from the central retina diminished vection strength. If the central and peripheral displays were moved in opposite directions, vection strength was unaffected, and the direction of vection was determined by motion of the central display on almost half of the trials when the centre was far. Near centres produced fewer centre-consistent responses. A complete understanding of linear vection requires that factors such as display size, retinal locus, and apparent depth plane are considered.  相似文献   

11.
We examined how spatial and temporal characteristics of the perception of self-motion, generated by constant velocity visual motion, was reflected in orientation of the head and whole body of young adults standing in a CAVE, a virtual environment that presents wide field of view stereo images with context and texture. Center of pressure responses from a force plate and perception of self-motion through orientation of a hand-held wand were recorded. The influence of the perception of self-motion on postural kinematics differed depending upon the plane and complexity of visual motion. Postural behaviors generated through the perception of self-motion appeared to contain a confluence of the cortically integrated visual and vestibular signals and of other somatosensory inputs. This would suggest that spatial representation during motion in the environment is modified by both ascending and descending controls. We infer from these data that motion of the visual surround can be used as a therapeutic tool to influence posture and spatial orientation, particularly in more visually sensitive individuals following central nervous system (CNS) impairment.  相似文献   

12.
During self-motions, different patterns of optic flow are presented to the left and right eyes. Previous research has, however, focused mainly on the self-motion information contained in a single pattern of optic flow. The present experiments investigated the role that binocular disparity plays in the visual perception of self-motion, showing that the addition of stereoscopic cues to optic flow significantly improves forward linear vection in central vision. Improvements were also achieved by adding changingsize cues to sparse (but not dense) flow patterns. These findings showed that assumptions in the heading literature that stereoscopic cues facilitate self-motion only when the optic flow has ambiguous depth ordering do not apply to vection. Rather, it was concluded that both stereoscopic and changingsize cues provide additional motion-in-depth information that is used in perceiving self-motion.  相似文献   

13.
A flight simulator was used to investigate the perception of self-motion and visual scene motion during the induction of saturated 10 deg/sec yaw and 50 m/sec surge vection, and during subsequent impairment of saturated vection by inertial motions. The subjects (n = 5) did not perceive any self-acceleration or visual scene deceleration during the induction of saturated vection but perceived a rather sudden change in self-velocity and visual scene velocity. The mean group times to saturated vection were 3.0 sec for yaw and 2.7 sec for surge. Above certain inertial motion amplitudes, the subjects reported additional self-motion from the applied inertial motions while experiencing saturated vection. To impair saturated yaw vection, these amplitudes were 0.6 m/sec2, 0.4 m/sec2, 8 deg/sec2, and 5 deg/sec2, for surge, sway, roll and yaw motions, respectively. To impair saturated surge vection, these amplitudes were 0.6 m/sec2, 0.3 m/sec2, 5 deg/sec2, and 4 deg/sec2, respectively. The results indicate that saturated vection is more robust for translations than for rotations because the rotational inertial amplitudes were closer to the amplitudes at which the applied inertial motion was perceived than the translational inertial amplitudes.  相似文献   

14.
Palmisano et al (2000 Perception 29 57-67) found that adding coherent perspective jitter to constant-velocity radial flow improved visually induced illusions of self-motion (vection). This was a surprising finding, because unlike pure radial flow, this jittering radial flow should have generated sustained visual--vestibular conflicts--previously thought to always reduce/impair vection. We attempted to ascertain the essential stimulus features for this jitter advantage for vection by examining three novel types of jitter display. While adding incoherent jitter to radial flow was found to impair vection, adding coherent non-perspective jitter had little effect on this subjective experience (contrary to the notion that jitter improves vection by reducing adaptation to radial flow). Importantly, we found that coherent perspective jitter not only improves the vection induced by radial flow, but it also appears to induce modest vection by itself (demonstrating that vection can still occur when there is an extreme mismatch between actual and expected vestibular activity). These results suggest that the previously demonstrated advantage for coherent perspective jitter was due (in part at least) to jittering vection combining with forwards vection in depth to produce a more compelling overall vection experience.  相似文献   

15.
Kim J  Palmisano S  Bonato F 《Perception》2012,41(4):402-414
Research has shown that adding simulated linear head oscillation to radial optic flow displays enhances the illusion of self-motion in depth (ie linear vection). We examined whether this oscillation advantage for vection was due to either the added motion parallax or retinal slip generated by insufficient compensatory eye movement during display oscillation. We constructed radial flow displays which simulated 1 Hz horizontal linear head oscillation (generates motion parallax) or angular head oscillation in yaw (generates no motion parallax). We found that adding simulated angular or linear head oscillation to radial flow increased the strength of linear vection in depth. Neither type of simulated head oscillation significantly reduced vection onset latencies relative to pure radial flow. Simultaneous eye-movement recordings showed that slow-phase ocular following responses (OFRs) were induced in both linear and angular viewpoint oscillation conditions. Vection strength was significantly reduced by active central fixation when viewing displays which simulated angular, but not linear, head oscillation. When these displays with angular oscillation were viewed without stable fixation, vection strength was found to increase with the velocity and regularity of the OFR. We conclude that vection improvements observed during central viewing of displays with angular viewpoint oscillation depend on the generation of eye movements.  相似文献   

16.
Seno T  Ito H  Sunaga S 《Perception》2011,40(6):747-750
We measured the strength of illusory self-motion perception (vection) with and without locomotion on a treadmill. The results revealed that vection was inhibited by inconsistent locomotion, but facilitated by consistent locomotion.  相似文献   

17.
Seno T  Yamada Y  Ihaya K 《Perception》2011,40(11):1390-1392
We examined the relationship between personality and visually induced self-motion perception (latency, duration, and magnitude). A psychological experiment with radially expanding patterns that induced self-motion perception along the fore and aft axis was conducted, followed by personality assessments. We found that all the measures of self-motion perception we examined correlated negatively with the degree of narcissistic traits.  相似文献   

18.
Previous vection research has tended to minimise visual-vestibular conflict by using optic-flow patterns which simulate self-motions of constant velocity. Here, experiments are reported on the effect of adding 'global-perspective jitter' to these displays--simulating forward motion of the observer on a platform oscillating in horizontal and/or vertical dimensions. Unlike non-jittering displays, jittering displays produced a situation of sustained visual-vestibular conflict. Contrary to the prevailing notion that visual-vestibular conflict impairs vection, jittering optic flow was found to produce shorter vection onsets and longer vection durations than non-jittering optic flow for all of jitter magnitudes and temporal frequencies examined. On the basis of these findings, it would appear that purely radial patterns of optic flow are not the optimal inducing stimuli for vection. Rather, flow patterns which contain both regular and random-oscillating components appear to produce the most compelling subjective experiences of self-motion.  相似文献   

19.
A uniformly moving visual pattern can induce observer's self-motion perception in the opposite direction (vection), and an additional static stimulus can modulate (facilitate or inhibit) the strength of it. The present study was designed to investigate the effects of stimulus depth order and the depth distances of the visual stimulus on the inhibition and facilitation of vection caused by the additional static stimulus, measuring duration and estimated magnitude of vection as indices of vection strength. Analysis of this psychophysical experiment with four participants indicated that the static foreground presented in front of the moving pattern can facilitate vection, whereas the static background inhibits it (Duration: F1,3= 12.06, p<.05; Estimation: F1,3= 13.87, p<.05). Furthermore, the depth distances from the observer or the depth separation between the foreground and the background did not affect the self-motion perception (F2,6 < 1.0 for duration and estimation).  相似文献   

20.
M Ohmi  I P Howard 《Perception》1988,17(1):5-11
It has previously been shown that when a moving and a stationary display are superimposed, illusory self-rotation (circular vection) is induced only when the moving display appears as the background. Three experiments are reported on the extent to which illusory forward self-motion (forward vection) induced by a looming display is inhibited by a superimposed stationary display as a function of the size and location of the stationary display and of the depth between the stationary and looming displays. Results showed that forward vection was controlled by the display that was perceived as the background, and background stationary displays suppressed forward vection by about the same amount whatever their size and eccentricity. Also, the perception of foreground-background properties of competing displays determined which controlled forward vection, and this control was not tied to specific depth cues. The inhibitory effect of a stationary background on forward vection was, however, weaker than that found with circular vection. This difference makes sense because, for forward body motion, the image of a distant scene is virtually stationary whereas, when the body rotates, it is not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号