首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a continuous-running-memory task, subjects heard novel seven-note melodies that were tested after delays of 11 sec (empty) or 39 sec (filled). Test items were transposed to new pitch levels (to moderately distant keys in the musical sense)and included exact transpositions (targets), same-contour lures with altered pitch intervals, and new-contour lures. Melodies differed in tonal strength (degree of conformity to a musical key) and were tonally strong, tonally weak, or atonal. False alarms to same-contour lures decreased over the longer delay period, but only for tonal stimuli. In agreement with previous studies, discrimination of detailed changes in pitch intervals improved with increased delay, whereas discrimination of more global contour information declined, again only for tonal stimuli. These results suggest that poor short-delay performance in rejecting same-contour lures arises from confusion that is based on the similarity of tonality between standard stimuli and lures. If a test item has the same contour and a similar tonality to a just-presented item, subjects tend to accept it. After a delay filled with melodies in other tonalities, the salience of key information recedes, and subjects base their judgments on more detailed pattern information (namely, exact pitch intervals). The fact that tonality affects judgments of melodic contour indicates that contour is not an entirely separable feature of melodies but rather that a melody with its contour constitutes an integrated perceptual whole.  相似文献   

2.
In a continuous-running-memory task, subjects heard novel seven-note melodies that were tested after delays of 11 sec (empty) or 39 sec (filled). Test items were transposed to new pitch levels (to moderately distant keys in the musical sense) and included exact transpositions (targets), same-contour lures with altered pitch intervals, and new-contour lures. Melodies differed in tonal strength (degree of conformity to a musical key) and were tonally strong, tonally weak, or atonal. False alarms to same-contour lures decreased over the longer delay period, but only for tonal stimuli. In agreement with previous studies, discrimination of detailed changes in pitch intervals improved with increased delay, whereas discrimination of more global contour information declined, again only for tonal stimuli. These results suggest that poor short-delay performance in rejecting same-contour lures arises from confusion that is based on the similarity of tonality between standard stimuli and lures. If a test item has the same contour and a similar tonality to a just-presented item, subjects tend to accept it. After a delay filled with melodies in other tonalities, the salience of key information recedes, and subjects base their judgments on more detailed pattern information (namely, exact pitch intervals). The fact that tonality affects judgments of melodic contour indicates that contour is not an entirely separable feature of melodies but rather that a melody with its contour constitutes an integrated perceptual whole.  相似文献   

3.
Pitch can be conceptualized as a bidimensional quantity, reflecting both the overall pitch level of a tone (tone height) and its position in the octave (tone chroma). Though such a conceptualization has been well supported for perception of a single tone, it has been argued that the dimension of tone chroma is irrelevant in melodic perception. In the current study, melodies were subjected to structural transformations designed to evaluate the effects of interval magnitude, contour, tone height, and tone chroma. In two transformations, the component tones of a melody were displaced by octave intervals, either preserving or violating the pattern of changes in pitch direction (melodic contour). Replicating previous work, when contour was violated perception of the melody was severely disrupted. In contrast, when contour was preserved the melodies were identified as accurately as the untransformed melodies. In other transformations, a variety of forms of contour information were preserved, while eliminating information for absolute pitch and interval magnitude. The level of performance on all such transformations fell between the levels observed in the other two conditions. These results suggest that the bidimensional model of pitch is applicable to recognition of melodies as well as single tones. Moreover, the results argue that contour, as well as interval magnitude, is providing essential information for melodic perception.  相似文献   

4.
Children's perception of scale and contour in melodies was investigated in five studies. Experimental tasks included judging transposed renditions of melodies (Studies 1 and 3), discriminating between transposed renditions of a melody (Study 2), judging contour-preserving transformations of melodies (Study 4), and judging similarity to a familiar target melody of transformations preserving rhythm or rhythm and contour (Study 5). The first and second studies showed that young children detect key transposition changes even in familiar melodies and they perceive similarity over key transpositions even in unfamiliar melodies. Young children also are sensitive to melodic contour over transformations that preserve it (Study 5), yet they distinguish spontaneously between melodies with the same contour and different intervals (Study 4). The key distance effect reported in the literature did not occur in the tasks of this investigation (Studies 1 and 3), and it may be apparent only for melodies shorter or more impoverished than those used here.  相似文献   

5.
Psychological Research - We investigated how the surface and structural information of pitch and time in melodies contribute to the perceived expectancy of melodic segments. The contour (pitch...  相似文献   

6.
The aim of this work was to investigate perceived loudness change in response to melodies that increase (up-ramp) or decrease (down-ramp) in acoustic intensity, and the interaction with other musical factors such as melodic contour, tempo, and tonality (tonal/atonal). A within-subjects design manipulated direction of linear intensity change (up-ramp, down-ramp), melodic contour (ascending, descending), tempo, and tonality, using single ramp trials and paired ramp trials, where single up-ramps and down-ramps were assembled to create continuous up-ramp/down-ramp or down-ramp/up-ramp pairs. Twenty-nine (Exp 1) and thirty-six (Exp 2) participants rated loudness continuously in response to trials with monophonic 13-note piano melodies lasting either 6.4 s or 12 s. Linear correlation coefficients > .89 between loudness and time show that time-series loudness responses to dynamic up-ramp and down-ramp melodies are essentially linear across all melodies. Therefore, ‘indirect’ loudness change derived from the difference in loudness at the beginning and end points of the continuous response was calculated. Down-ramps were perceived to change significantly more in loudness than up-ramps in both tonalities and at a relatively slow tempo. Loudness change was also greater for down-ramps presented with a congruent descending melodic contour, relative to an incongruent pairing (down-ramp and ascending melodic contour). No differential effect of intensity ramp/melodic contour congruency was observed for up-ramps. In paired ramp trials assessing the possible impact of ramp context, loudness change in response to up-ramps was significantly greater when preceded by down-ramps, than when not preceded by another ramp. Ramp context did not affect down-ramp perception. The contribution to the fields of music perception and psychoacoustics are discussed in the context of real-time perception of music, principles of music composition, and performance of musical dynamics.  相似文献   

7.
What is the involvement of what we know in what we perceive? In this article, the contribution of melodic schema-based processes to the perceptual organization of tone sequences is examined. Two unfamiliar six-tone melodies, one of which was interleaved with distractor tones, were presented successively to listeners who were required to decide whether the melodies were identical or different. In one condition, the comparison melody was presented after the mixed sequence: a target melody interleaved with distractor tones. In another condition, it was presented beforehand, so that the listeners had precise knowledge about the melody to be extracted from the mixture. In the latter condition, recognition performance was better and a bias toward same responses was reduced, as compared with the former condition. A third condition, in which the comparison melody presented beforehand was transposed up in frequency, revealed that whereas the performance improvement was explained in part by absolute pitch or frequency priming, relative pitch representation (interval and/or contour structure) may also have played a role. Differences in performance as a function of mean frequency separation between target and distractor sequences, when listeners did or did not have prior knowledge about the target melody, argue for a functional distinction between primitive and schema-based processes in auditory scene analysis.  相似文献   

8.
Three experiments were conducted to study motor programs used by expert singers to produce short tonal melodies. Each experiment involved a response-priming procedure in which singers prepared to sing a primary melody but on 50% of trials had to switch and sing a different (secondary) melody instead. In Experiment 1, secondary melodies in the same key as the primary melody were easier to produce than secondary melodies in a different key. Experiment 2 showed that it was the initial note rather than key per se that affected production of secondary melodies. In Experiment 3, secondary melodies involving exact transpositions were easier to sing than secondary melodies with a different contour than the primary melody. Also, switches between the keys of C and G were easier than those between C and E. Taken together, these results suggest that the initial note of a melody may be the most important element in the motor program, that key is represented in a hierarchical form, and that melodic contour is represented as a series of exact semitone offsets.  相似文献   

9.
A number of different cues allow listeners to perceive musical meter. Three experiments examined effects of melodic and temporal accents on perceived meter in excerpts from folk songs scored in 6/8 or 3/4 meter. Participants matched excerpts with 1 of 2 metrical drum accompaniments. Melodic accents included contour change, melodic leaps, registral extreme, melodic repetition, and harmonic rhythm. Two experiments with isochronous melodies showed that contour change and melodic repetition predicted judgments. For longer melodies in the 2nd experiment, variables predicted judgments best at the beginning of excerpts. The final experiment, with rhythmically varied melodies, showed that temporal accents, tempo, and contour change were the strongest predictors of meter. The authors' findings suggest that listeners combine multiple melodic and temporal features to perceive musical meter.  相似文献   

10.
In this study, we investigated the influence of tonal relatedness on pitch perception in melodies. Tonal expectations for target tones were manipulated in melodic contexts while controlling sensory expectations, thus allowing us to assess specifically the influence oftonal expectations on pitch perception. Three experimentsprovided converging evidence that tonal relatedness modulates pitch perception in nonmusician listeners. Experiment 1 showed, with a rating task, the influence of the tonal relatedness of a target tone on listeners' judgments of tuning/mistuning. Experiment 2 showed, with a priming task, that pitch processing of in-tune tones was faster for tonally related targets than for less related targets. Experiment 3 showed, with a comparison task, that discrimination performance for small mistunings was better when the to-be-compared tones were tonally related to the melodic context. Findings are discussed in relation to psychoacoustic research on contextual pitch perception and to studies showing facilitation of early processing steps via knowledge- and attention-related processes.  相似文献   

11.
People easily recognize a familiar melody in a previously unheard key, but they also retain some key-specific information. Does the recognition of a transposed melody depend on either pitch distance or harmonic distance from the initially learned instances? Previous research has shown a stronger effect of pitch closeness than of harmonic similarity, but did not directly test for an additional effect of the latter variable. In the present experiment, we familiarized participants with a simple eight-note melody in two different keys (C and D) and then tested their ability to discriminate the target melody from foils in other keys. The transpositions included were to the keys of C# (close in pitch height, but harmonically distant), G (more distant in pitch, but harmonically close), and F# (more distant in pitch and harmonically distant). Across participants, the transpositions to F# and G were either higher or lower than the initially trained melodies, so that their average pitch distances from C and D were equated. A signal detection theory analysis confirmed that discriminability (d′) was better for targets and foils that were close in pitch distance to the studied exemplars. Harmonic similarity had no effect on discriminability, but it did affect response bias (c), in that harmonic similarity to the studied exemplars increased both hits and false alarms. Thus, both pitch distance and harmonic distance affect the recognition of transposed melodies, but with dissociable effects on discrimination and response bias.  相似文献   

12.
Two experiments explore hypotheses about rhythm and contour in recognition of simple pitch strings (melodies). Target melodies that differed with respect to pitch relationships (interval and contour pitch differences) and rhythm, were presented to ordinary listeners who were told to learn the melodies (Phase I). In a subsequent recognition test (Phase II), listeners had to recognize these same target melodies although they were transposed to a different musical key. In recognition, target melodies appeared in the original rhythm or in new rhythms that simulated some pause properties of the original rhythm. Target melodies were interspersed with decoy melodies that either preserved the pitch contour of targets or did not; all appeared in the original rhythm and in new rhythms. Results indicated that a new rhythmic context lowered recognizability of target melodies, and that decoys were most confusing when they possessed the same “dynamic shape” (contour-plus-rhythm) as targets (Experiment 1). Also, target recognition improved with Phase I familiarity (Experiment 2), although rhythmic shifts remained detrimental across levels of target familiarity. Confusions based on “dynamic shape” accounted for a relatively high proportion of errors where familiarity with targets is low. Findings were interpreted in terms of a theory of context-sensitive dynamic attending in which remembering is assumed to involve recapitulation of the original rhythmical activities involved in attending to melodies.  相似文献   

13.
The present study was designed to investigate the influences of type of psychophysical task (two-alternative forced-choice [2AFC] and reminder tasks), type of interval (filled vs. empty), sensory modality (auditory vs. visual), and base duration (ranging from 100 through 1,000 ms) on performance on duration discrimination. All of these factors were systematically varied in an experiment comprising 192 participants. This approach allowed for obtaining information not only on the general (main) effect of each factor alone, but also on the functional interplay and mutual interactions of some or all of these factors combined. Temporal sensitivity was markedly higher for auditory than for visual intervals, as well as for the reminder relative to the 2AFC task. With regard to base duration, discrimination performance deteriorated with decreasing base durations for intervals below 400 ms, whereas longer intervals were not affected. No indication emerged that overall performance on duration discrimination was influenced by the type of interval, and only two significant interactions were apparent: Base Duration × Type of Interval and Base Duration × Sensory Modality. With filled intervals, the deteriorating effect of base duration was limited to very brief base durations, not exceeding 100 ms, whereas with empty intervals, temporal discriminability was also affected for the 200-ms base duration. Similarly, the performance decrement observed with visual relative to auditory intervals increased with decreasing base durations. These findings suggest that type of task, sensory modality, and base duration represent largely independent sources of variance for performance on duration discrimination that can be accounted for by distinct nontemporal mechanisms.  相似文献   

14.
This study aimed to develop tests for differentiating auditory perception skills, e.g., to test drug effects. In Exp. 1 (N = 60), discrimination of succeeding frequencies, frequency identification assessed by a choice reaction task, and the perception of pitch contour assessed by frequency deviants in binaural melodies showed zero partial correlations. In Exp. 2 (N = 36), discrimination correlated with performance on a field dependence test; fast frequency identification correlated with verbal fluency. The auditory tests are likely suitable for assessing distinct skills, but correlations with general cognitive abilities require further investigations.  相似文献   

15.
Much research has explored developing sound representations in language, but less work addresses developing representations of other sound patterns. This study examined preschool children's musical representations using two different tasks: discrimination and sound–picture association. Melodic contour—a musically relevant property—and instrumental timbre, which is (arguably) less musically relevant, were tested. In Experiment 1, children failed to associate cartoon characters to melodies with maximally different pitch contours, with no advantage for melody preexposure. Experiment 2 also used different‐contour melodies and found good discrimination, whereas association was at chance. Experiment 3 replicated Experiment 2, but with a large timbre change instead of a contour change. Here, discrimination and association were both excellent. Preschool‐aged children may have stronger or more durable representations of timbre than contour, particularly in more difficult tasks. Reasons for weaker association of contour than timbre information are discussed, along with implications for auditory development.  相似文献   

16.
In three experiments, musically trained and untrained adults listened to three repetitions of a 5-note melodic sequence followed by a final melody with either the same tune as those preceding it or differing in one position by one semitone. In Experiment 1, ability to recognize the final sequence was examined as a function of redundancy at the levels of musical structure in a sequence, contour complexity of transpositions in a trial, and trial context in a session. Within a sequence, tones were related as the major or augmented triad; within a trial, the four sequences began on successively higher notes (simple macrocontour) or on randomly selected notes (complex macrocontour); and within a session, trials were either blocked (all major or all augmented) or mixed (major and augmented randomly selected). Performance was superior for major melodies, for systematic transpositions within a trial (simple macrocontours), for blocked trials, and for musically trained listeners. In Experiment 2, we examined further the effect of macrocontour. Performance on simple macrocontours exceeded that on complex, and excluded the possibility that repetition of the 20-note sequences provided the entire benefit of systematic transposition in Experiment 1. The effect of musical structure (major/augmented) was also replicated. In Experiment 3, listeners provided structure ratings of ascending 20-note sequences from Experiment 2. Ratings on same trials were higher than those on corresponding different trials, in contrast to performance scores for augmented same and different trials in previous experiments. The concept of functional uncertainty was proposed to account for recognition difficulties on augmented same trials. The significant effects of redundancy on all the levels examined confirm the utility of the information-processing framework for the study of melodic sequence perception.  相似文献   

17.
Experiments 1 and 2 compared, with a single-stimulus procedure, the discrimination of filled and empty intervals in both auditory and visual modalities. In Experiment 1, in which intervals were about 250 msec, the discrimination was superior with empty intervals in both modalities. In Experiment 2, with intervals lasting about 50 msec, empty intervals showed superior performance with visual signals only. In Experiment 3, for the auditory modality at 250 msec, the discrimination was easier with empty intervals than with filled intervals with both the forced-choice (FC) and the single stimulus (SS) modes of presentation, and the discrimination was easier with the FC than with the SS method. Experiment 4, however, showed that at 50 and 250 msec, with a FC-adaptive procedure, there were no differences between filled and empty intervals in the auditory mode; the differences observed with the visual mode in Experiments 1 and 2 remained significant. Finally, Experiment 5 compared differential thresholds for four marker-type conditions, filled and empty intervals in the auditory and visual modes, for durations ranging from .125 to 4 sec. The results showed (1) that the differential threshold differences among marker types are important for short durations but decrease with longer durations, and (2) that a generalized Weber’s law generally holds for these conditions. The results as a whole are discussed in terms of timing mechanisms.  相似文献   

18.
Some influences of accent structure on melody recognition   总被引:1,自引:0,他引:1  
Two experiments were carried out to investigate the roles of joint accent structure and familiarity in delayed recognition of relatively long tonal melodies. Melodic themes of target melodies were defined by correlating contour-related pitch accents with temporal accents (accent coupling) during an initial familiarization phase. Later, subjects gave recognition responses to key-transposed versions of the target melodies as well as to decoys with same and different contour accent patterns. In Experiment 1, all to-be-recognized melodies occurred both in an original rhythm, which preserved accent coupling, and in a new rhythm, which did not. Listeners were best at distinguishing targets from different decoys, especially in the original rhythm. In Experiment 2, the familiarity of target tunes and the rhythmic similarity in recognition were varied. Similar rhythms preserved accent coupling, whereas dissimilar rhythms did not. Listeners were most adept in distinguishing familiar targets from different decoys (Experiment 2A), particularly when they appeared in novel but similar rhythms. However, in similar rhythm conditions, listeners also frequently mistook same decoys for targets. With less familiar targets (Experiment 2B), these effects were attenuated, and performance showed general effects of pitch contour.  相似文献   

19.
In three experiments, musically trained and untrained adults listened to three repetitions of a 5-note melodic sequence followed by a final melody with either the same tune as those preceding it or differing in one position by one semitone. In Experiment 1, ability to recognize the final sequence was examined as a function of redundancy at the levels of musical structurein a sequence, contour complexity of transpositions in a trial, and trial context in a session. Within a sequence, tones were related as the major or augmented triad; within a trial, the four sequences began on successively higher notes (simple macrocontour) or on randomly selected notes (complex macrocontour); and within a session, trials were either blocked (all major or all augmented) or mixed (major and augmented randomly selected). Performance was superior for major melodies, for systematic transpositions within a trial (simple macrocontours), for blocked trials, and for musically trained listeners. In Experiment 2, we examined further the effect of macrocontour. Performance on simple macrocontours exceeded that on complex, and excluded the possibility that repetition of the 20-note sequences provided the entire benefit of systematic transposition in Experiment 1. The effect of musical structure (major/augmented) was also replicated. In Experiment 3, listeners provided structure ratings of ascending 20-note sequences fromExperiment 2. Ratings onsame trials were higher than those on correspondingdifferent trials, in contrast to performance scores for augmentedsame anddifferent trials in previous experiments. The concept of functional uncertainty was proposed to account for recognition difficulties on augmented same trials. The significant effects of redundancy on all the levels examined confirm the utility of the information-processing framework for thestudy of melodic sequence perception.  相似文献   

20.
The hypothesis that melodies are recognized at moments when they exhibit a distinctive musical pattern was tested. In a melody recognition experiment, point-of-recognition (POR) data were gathered from 32 listeners (16 musicians and 16 nonmusicians) judging 120 melodies. A series of models of melody recognition were developed, resulting from a stepwise multiple regression of two classes of information relating to melodic familiarity and melodic distinctiveness. Melodic distinctiveness measures were assembled through statistical analyses of over 15,000 Western themes and melodies. A significant model, explaining 85% of the variance, entered measures primarily of timing distinctiveness and pitch distinctiveness, but excluding familiarity, as predictors of POR. Differences between nonmusician and musician models suggest a processing shift from momentary to accumulated information with increased exposure to music. Supplemental materials for this article may be downloaded from http://mc.psychonomic-journals.org/content/supplemental.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号