首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined attentional biases for social and non-social emotional stimuli in young adult men and compared the results to those of male rhesus monkeys (Macaca mulatta) previously tested in a similar dot-probe task (King et al. in Psychoneuroendocrinology 37(3):396–409, 2012). Recognition memory for these stimuli was also analyzed in each species, using a recognition memory task in humans and a delayed non-matching-to-sample task in monkeys. We found that both humans and monkeys displayed a similar pattern of attentional biases toward threatening facial expressions of conspecifics. The bias was significant in monkeys and of marginal significance in humans. In addition, humans, but not monkeys, exhibited an attentional bias away from negative non-social images. Attentional biases for social and non-social threat differed significantly, with both species showing a pattern of vigilance toward negative social images and avoidance of negative non-social images. Positive stimuli did not elicit significant attentional biases for either species. In humans, emotional content facilitated the recognition of non-social images, but no effect of emotion was found for the recognition of social images. Recognition accuracy was not affected by emotion in monkeys, but response times were faster for negative relative to positive images. Altogether, these results suggest shared mechanisms of social attention in humans and monkeys, with both species showing a pattern of selective attention toward threatening faces of conspecifics. These data are consistent with the view that selective vigilance to social threat is the result of evolutionary constraints. Yet, selective attention to threat was weaker in humans than in monkeys, suggesting that regulatory mechanisms enable non-anxious humans to reduce sensitivity to social threat in this paradigm, likely through enhanced prefrontal control and reduced amygdala activation. In addition, the findings emphasize important differences in attentional biases to social versus non-social threat in both species. Differences in the impact of emotional stimuli on recognition memory between monkeys and humans will require further study, as methodological differences in the recognition tasks may have affected the results.  相似文献   

2.
Humans and chimpanzees demonstrate numerous cognitive specializations for processing faces, but comparative studies with monkeys suggest that these may be the result of recent evolutionary adaptations. The present study utilized the novel approach of face space, a powerful theoretical framework used to understand the representation of face identity in humans, to further explore species differences in face processing. According to the theory, faces are represented by vectors in a multidimensional space, the centre of which is defined by an average face. Each dimension codes features important for describing a face's identity, and vector length codes the feature's distinctiveness. Chimpanzees and rhesus monkeys discriminated male and female conspecifics’ faces, rated by humans for their distinctiveness, using a computerized task. Multidimensional scaling analyses showed that the organization of face space was similar between humans and chimpanzees. Distinctive faces had the longest vectors and were the easiest for chimpanzees to discriminate. In contrast, distinctiveness did not correlate with the performance of rhesus monkeys. The feature dimensions for each species’ face space were visualized and described using morphing techniques. These results confirm species differences in the perceptual representation of conspecific faces, which are discussed within an evolutionary framework.  相似文献   

3.
Face recognition in humans is a complex cognitive skill that requires sensitivity to unique configurations of eyes, mouth, and other facial features. The Thatcher illusion has been used to demonstrate the importance of orientation when processing configural information within faces. Transforming an upright face so that the eyes and mouth are inverted renders the face grotesque; however, when this “Thatcherized” face is inverted, the effect disappears. Due to the use of primate models in social cognition research, it is important to determine the extent to which specialized cognitive functions like face processing occur across species. To date, the Thatcher illusion has been explored in only a few species with mixed results. Here, we used computerized tasks to examine whether nonhuman primates perceive the Thatcher illusion. Chimpanzees and rhesus monkeys were required to discriminate between Thatcherized and unaltered faces presented upright and inverted. Our results confirm that chimpanzees perceived the Thatcher illusion, but rhesus monkeys did not, suggesting species differences in the importance of configural information in face processing. Three further experiments were conducted to understand why our results differed from previously published accounts of the Thatcher illusion in rhesus monkeys.  相似文献   

4.
Whether the cognitive competences of monkeys and apes are rather similar or whether the larger-brained apes outperform monkeys in cognitive experiments is a highly debated topic. Direct comparative analyses are therefore essential to examine similarities and differences among species. We here compared six primate species, including humans, chimpanzees, bonobos, gorillas (great apes), olive baboons, and long-tailed macaques (Old World monkeys) in a task on fine-grained size discrimination. Except for gorillas, subjects of all taxa (i.e. humans, apes, and monkeys) were able to discriminate three-dimensional cubes with a volume difference of only 10 % (i.e. cubes of 50 and 48 mm side length) and performed only slightly worse when the cubes were presented successively. The minimal size discriminated declined further with increasing time delay between presentations of the cubes, highlighting the difficulty to memorize exact size differences. The results suggest that differences in brain size, as a proxy for general cognitive abilities, did not account for variation in performance, but that differential socio-ecological pressures may better explain species differences. Our study highlights the fact that differences in cognitive abilities do not always map neatly onto phylogenetic relationships and that in a number of cognitive experiments monkeys do not fare significantly worse than apes, casting doubt on the assumption that larger brains per se confer an advantage in such kinds of tests.  相似文献   

5.
The authors compared the performance of humans and monkeys in a Same-Different task. They evaluated the hypothesis that for humans the Same-Different concept is qualitative, categorical, and rule-based, so that humans distinguish 0-disparity pairs (i.e., same) from pairs with any discernible disparity (i.e., different); whereas for monkeys the Same-Different concept is quantitative, continuous, and similarity-based, so that monkeys distinguish small-disparity pairs (i.e., similar) from pairs with a large disparity (i.e., dissimilar). The results supported the hypothesis. Monkeys, more than humans, showed a gradual transition from same to different categories and an inclusive criterion for responding Same. The results have implications for comparing Same-Different performances across species--different species may not always construe or perform even identical tasks in the same way. In particular, humans may especially apply qualitative, rule-based frameworks to cognitive tasks like Same-Different.  相似文献   

6.
Researchers have investigated to what extent non-human primates understand others’ attentional states, as this ability is considered an important prerequisite for theory of mind. However, previous studies using food requesting tasks have failed to show that non-human primates attribute perception to others as a function of their attentional states. One possible reason is that food requesting tasks may require subjects not only to take into account an experimenter’s attentional state but also to direct it toward the food. The present study tested tufted capuchin monkeys’ (Cebus apella) understanding of others’ attentional states in a food requesting task. In the first situation, monkeys were required only to attract an experimenter’s attention. In the second situation, the monkeys were required to both attract the experimenter’s attention and direct it toward food on a table. The results revealed that capuchin monkeys showed evidence of understanding the experimenter’s attentional variations only in the former condition. This suggests that previous tasks, requiring referential gestures, lacking in most non-human primates, failed to reveal sensitivity to human attentional states because the subjects might not have understood the requesting situation. In conclusion, capuchin monkeys can understand variations in others’ attentional states, although this ability appears limited compared to what is seen in humans.  相似文献   

7.
Humans and monkeys were compared in their identification of phoneme boundaries along synthetic stop-glide continua in syllable-initial /ba/-/wa/ or syllable-final /bab/-/baw/ contrasts differing in overall syllable duration. For both contrasts, humans were first tested with a conventional written identification procedure. Here, similar phoneme boundaries emerged and shifted with increases in syllable duration toward longer transitions, as has previously been reported in the literature for syllable-initial data (Miller & Liberman, 1979). Humans and monkeys were then tested on these contrasts, using a go/no-go identification procedure specifically designed for monkeys. Here also, stop-glide boundaries emerged and shifted with increased syllable duration for both species, although monkey “boundaries” were at longer durations than humans’ in syllable-final position. The results indicate that there are both gross similarities and subtle differences between humans and monkeys with regard to the stop-glide context effect. The results are discussed in relation to the hypothesis that general mammalian auditory mechanisms are responsible for this effect.  相似文献   

8.
《Cognition》2014,130(3):300-308
Young infants’ successful performance on false belief tasks has led several researchers to argue that there may be a core knowledge system for representing the beliefs of other agents, emerging early in human development and constraining automatic belief processing into adulthood. One way to investigate this purported core belief representation system is to examine whether non-human primates share such a system. Although non-human primates have historically performed poorly on false belief tasks that require executive function capacities, little work has explored how primates perform on more automatic measures of belief processing. To get at this issue, we modified Kovács et al. (2010)’s test of automatic belief representation to examine whether one non-human primate species—the rhesus macaque (Macaca mulatta)—is automatically influenced by another agent’s beliefs when tracking an object’s location. Monkeys saw an event in which a human agent watched an apple move back and forth between two boxes and an outcome in which one box was revealed to be empty. By occluding segments of the apple’s movement from either the monkey or the agent, we manipulated both the monkeys’ belief (true or false) and agent’s belief (true or false) about the final location of the apple. We found that monkeys looked longer at events that violated their own beliefs than at events that were consistent with their beliefs. In contrast to human infants, however, monkeys’ expectations were not influenced by another agent’s beliefs, suggesting that belief representation may be an aspect of core knowledge unique to humans.  相似文献   

9.
We investigated the absolute auditory sensitivities of three monkey species (Cercopithecus aethiops, C. neglectus, and Macaca fuscata) and humans (Homo sapiens). Results indicated that species-typical variation exists in these primates. Vervets, which have the smallest interaural distance of the species that we tested, exhibited the greatest high-frequency sensitivity. This result is consistent with Masterton, Heffner, and Ravizza's (1969) observations that head size and high-frequency acuity are inversely correlated in mammals. Vervets were also the most sensitive in the middle frequency range. Furthermore, we found that de Brazza's monkeys, though they produce a specialized, low-pitched boom call, did not show the enhanced low-frequency sensitivity that Brown and Waser (1984) showed for blue monkeys (C. mitis), a species with a similar sound. This discrepancy may be related to differences in the acoustics of the respective habitats of these animals or in the way their boom calls are used. The acuity of Japanese monkeys was found to closely resemble that of rhesus macaques (M. mulatta) that were tested in previous studies. Finally, humans tested in the same apparatus exhibited normative sensitivities. These subjects responded more readily to low frequencies than did the monkeys but rapidly became less sensitive in the high ranges.  相似文献   

10.
The performance of young and adult capuchin monkeys (Cebus apella) on a Concurrent Discrimination Learning (CDL) test and a Delayed Non-Matching to Sample (DNMS) task were investigated. Results indicate that all subjects were able to learn the CDL test with 20-pairs simultaneously and retain this stimulus/reward association within 24-h interval. In contrast, young subjects did not perform the DNMS task with the same proficiency as adults. While adults' scores were above chance across all memory test delays, the young capuchin monkeys performed the test by chance level. These results support the hypothesis that these two tasks require different cognitive processes mediated by two independent neural systems with a differentiated ontogenetic development. Moreover, they provide evidence that this dissociation occurs not only in humans and Old World monkeys but also in the New World capuchin monkeys indicating that this species can be a valuable alternative model for investigations of the neurobiological basis of memory.  相似文献   

11.
Squirrel monkeys (Saimiri sciureus) and titi monkeys (Callicebus moloch) were studied in tasks involving reaching for food in near space (arm's reach). Although performance by monkeys of the two species differed in several ways familiar from previous studies, the species did not differ in the tendency to adopt a habitual position or limb during reaching. The findings contrast with previous work on spatial preferences in these species in tasks involving movement of the whole body. Together with the results of previous studies on movement patterns in these two species, the findings are placed in a comparative psychological framework of the proximate sources of use of space in nature.  相似文献   

12.
Conscious and unconscious cognitive processes contribute independently to human behavior and can be dissociated. For example, humans report failing to see objects clearly in the periphery while simultaneously being able to grasp those objects accurately (Milner in Proc R Soc B Biol Sci 279:2289–2298, 2012). Knowing whether similar dissociations are present in nonverbal species is critical to our understanding of comparative psychology and the evolution of brains. However, such dissociations are difficult to detect in nonhumans because verbal reports of experience are the main way we discriminate putative conscious from unconscious processing. We trained monkeys in a localization task in which they responded to the location where a target appeared, and a matched detection task in which they reported the presence or absence of the same target. We used masking to manipulate the visibility of targets. Accuracy was high in both tasks when stimuli were unmasked and was attenuated by visual masking. At the strongest level of masking, performance in the detection task was at chance, while localization remained significantly above chance. Critically, errors in the detection task were predominantly misses, indicating that the monkeys’ behavior remained under stimulus control, but that the monkeys did not detect the target despite above-chance localization. While these results cannot establish the existence of phenomenal vision in monkeys, the dissociation of visually guided action from detection parallels the dissociation of conscious and unconscious vision seen in humans.  相似文献   

13.
The authors examined the effects of task complexity and posture on laterality and compared lateralization during different tasks in 9 captive grey-cheeked mangabeys (Lophocebus albigena) during spontaneous food processing and 3 experimental tasks. Comparisons with data of red-capped mangabeys (Cercocebus torquatus torquatus; semiterrestrial species) were used. Less than half the monkeys were lateralized for simple everyday activities, but 6 were lateralized for complex daily activities. Moreover, all the monkeys were lateralized when performing experimental tasks. Laterality at the group level was found for the bipedal task: Mangabeys were right-handed. Complexity of tasks increases laterality at the individual level. Significant differences between the 2 species of mangabeys were found, allowing us to confirm that postural constraints are a major factor in the emergence of group handedness.  相似文献   

14.
Social evaluation during third-party interactions emerges early in human ontogeny, and it has been shown in adult capuchin monkeys who witness violations of reciprocity in object exchanges: Monkeys were less inclined to accept food from humans who refused to reciprocate with another human. A recent study reporting similar evidence in marmoset monkeys raised the possibility that such evaluations might be based on species’ inherent cooperativeness. We tested a species not renowned for cooperativeness—squirrel monkeys—using the procedure used with marmosets and found a similar result. This finding rules out any crucial role for cooperative tendencies in monkeys’ responses to unfair exchanges. We then tested squirrel monkeys using procedures more similar to those used in the original study with capuchins. Squirrel monkeys again accepted food less frequently from non-reciprocators, but unlike capuchins, they also strongly preferred reciprocators. We conclude that neither squirrel monkeys nor marmoset monkeys engaged in emotional bookkeeping of the type that probably underlies social evaluation in capuchin monkeys; instead, they employed one or more simple behavioral rules. Further comparative studies are required to clarify the mechanisms underlying social evaluation processes across species.  相似文献   

15.
Planning is an important aspect of many daily activities for humans. Planning involves forming a strategy in anticipation of a future need. However, evidence that nonhuman animals can plan for future situations is limited, particularly in relation to the many other kinds of cognitive capacities that they appear to share with humans. One critical aspect of planning is the ability to remember future responses, or what is called prospective coding. Two monkey species (Macaca mulatta and Cebus apella) performed a series of computerized tasks that required encoding a future response at the outset of each trial. Monkeys of both species showed competence in all tests that were given, providing evidence that they anticipated future responses and that they appropriately engaged in those responses when the time was right for such responses. In addition, some tests demonstrated that monkeys even remembered future responses that were not as presently motivating as were other aspects of the task environment. These results indicated that monkeys could anticipate future responses and retain and implement those responses when appropriate.  相似文献   

16.
In influential research, R. N. Shepard, C. I. Hovland, and H. M. Jenkins (1961) surveyed humans' categorization abilities using tasks based in rules, exclusive-or (XOR) relations, and exemplar memorization. Humans' performance was poorly predicted by cue-conditioning or stimulus-generalization theories, causing Shepard et al. to describe it in terms of hypothesis selection and rule application that were possibly supported by verbal mediation. The authors of the current article surveyed monkeys' categorization abilities similarly. Monkeys, like humans, found category tasks with a single relevant dimension the easiest and perceptually chaotic tasks requiring exemplar memorization the most difficult. Monkeys, unlike humans, found tasks based in XOR relations very difficult. The authors discuss the character and basis of the species difference in categorization and consider whether monkeys are the generalization-based cognitive system that humans are not.  相似文献   

17.
Despite many demonstrations of numerical competence in nonhuman animals, little is known about how well animals enumerate moving stimuli. In this series of experiments, rhesus monkeys (Macaca mulatta) and capuchin monkeys (Cebus apella) performed computerized tasks in which they had to enumerate sets of stimuli. In Experiment 1, rhesus monkeys compared two sets of moving stimuli. Experiment 2 required comparisons of a moving set and a static set. Experiment 3 included human participants and capuchin monkeys to assess all 3 species' performance and to determine whether responding was to the numerical properties of the stimulus sets rather than to some other stimulus property such as cumulative area. Experiment 4 required both monkey species to enumerate subsets of each moving array. In all experiments, monkeys performed above chance levels, and their responses were controlled by the number of items in the arrays as opposed to nonnumerical stimulus dimensions. Rhesus monkeys performed comparably to adult humans when directly compared although capuchin performance was lower.  相似文献   

18.
Previous evidence has suggested that analogical reasoning (recognizing similarities among object relations when the objects themselves are dissimilar) is limited to humans and apes. This study investigated whether capuchin monkeys (Cebus apella) can use analogical reasoning to solve a 3-dimensional search task. The task involved hiding a food item under 1 of 2 or 3 plastic cups of different sizes and then allowing subjects to search for food hidden under the cup of analogous size in their own set of cups. Four monkeys were exposed to a series of relational matching tasks. If subjects reached criterion on these tasks, they were exposed to relational transfer tasks involving novel stimuli. Three of the monkeys failed to reach criterion on the basic relational matching tasks and therefore were not tested further. One monkey, however, revealed above-chance performance on a series of transfer tasks with 3 novel stimuli. This evidence suggests that contrary to previous arguments, a member of a New World monkey species can solve an analogical problem.  相似文献   

19.
The authors investigated perceptual grouping in capuchin monkeys (Cebus apella) and humans (Homo sapiens). In Experiment 1, 6 monkeys received a visual pattern as the sample and had to identify the comparison stimulus featuring some of its parts. Performance was better for ungrouped parts than for grouped parts. In Experiment 2, the sample featured the parts, and the comparison stimuli, the complex figures: The advantage for ungrouped elements disappeared. In Experiment 3, in which new stimuli were introduced, the results of the previous experiments were replicated. In Experiment 4, 128 humans were presented with the same tasks and stimuli used with monkeys. Their accuracy was higher for grouped parts. Results suggest that human and nonhuman primates use different modes of analyzing multicomponent patterns.  相似文献   

20.
This investigation was designed to determine whether perceived control effects found in humans extend to rhesus monkeys (Macaca mulatta) tested in a video-task format, using a computer-generated menu program, SELECT. Choosing one of the options in SELECT resulted in presentation of 5 trials of a corresponding task and subsequent return to the menu. In Experiments 1-3, the animals exhibited stable, meaningful response patterns in this task (i.e., they made choices). In Experiment 4, performance on tasks that were selected by the animals significantly exceeded performance on identical tasks when assigned by the experimenter under comparable conditions (e.g., time of day, order, variety). The reliable and significant advantage for performance on selected tasks, typically found in humans, suggests that rhesus monkeys were able to perceive the availability of choices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号