首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
When observers are asked to localize the final position of a moving target, a forward shift of the judged final position is observed. So far, the forward shift has been attributed to the influence of mental continuation of the final target position (representational momentum). However, studies investigating forward displacement have used highly predictable target motion. The direction of target motion and the final target position were often varied between subjects. Thus, observers may have expected the target to travel in a particular direction or vanish at a particular location before a given trial started. In this study, direction of motion and final position were treated as fixed or random factors. The forward shift and the reversal of the shift with time (memory averaging) were absent when both factors were randomized. Thus, the forward shift with implied motion is restricted to repeatedly observed motion sequences that allow for pre-trial motion prediction.  相似文献   

2.
Effects of background context on representational momentum -were examined in six experiments. In each experiment, three orientations of a target rectangle undergoing implied rotation (i.e., the inducing stimuli) were presented, and subjects judged whether the orientation of a fourth rectangle (i.e., the probe) was the same as or different from that of the third inducing stimulus. Target rectangles were enclosed within a larger square frame context during induction (i.e., presentation of the inducing stimuli), judgment (i.e., presentation of the probe), or both induction and judgment. If context during induction moved in the same direction as the inducing stimuli or if context during judgment was rotated slightly forward from the orientation of the final inducing stimulus, representational momentum was increased. If context during induction moved in the direction opposite to the inducing stimuli or if context during judgment was rotated slightly backward from the orientation of the final inducing stimulus, representational momentum was decreased or reversed. If context was present during both induction and judgment, direction of representational momentum was biased toward the context at judgment Implications of context for accounts of representational momentum are discussed, and a tentative model is proposed.  相似文献   

3.
表征动量是指由于诱导物理动量的作用, 人们对先前运动刺激最终位移的记忆将沿着运动的方向向前发生偏移的现象。诱导物理重力、摩擦力、万有引力同样影响运动刺激最终位移的定位, 扩展了表征动量的概念。相关的表征动量理论模型有:内化理论、朴素物理理论、预期理论、网络模型、眼动理论、双加工理论和计算理论。未来的研究应分别从普遍性和特殊性方面继续探讨表征动量的理论模型, 并加强神经机制的研究, 以便更好的解释日常生活中的内隐运动。  相似文献   

4.
The influence of a moving target on memory for the location of a briefly presented stationary object was examined. When the stationary object was aligned with the final portion of the moving target's trajectory, memory for the location of the stationary object was displaced forward (i.e., in the direction of motion of the moving target); the magnitude of forward displacement increased with increases in the velocity of the moving target, decreased with increases in the distance of the stationary object from the final location of the moving target, and increased and then decreased with increases in retention interval. It is suggested that forward displacement in memory for a stationary object aligned with the final portion of a moving target's trajectory reflects an influence of representational momentum of the moving target on memory for the location of the stationary object. Implications of the data for theories of representational momentum and motion induced mislocalization are discussed.  相似文献   

5.
Memory for the final location of a moving target is often displaced in the direction of target motion, and this has been referred to asrepresentational momentum. Characteristics of the target (e.g., velocity, size, direction, and identity), display (e.g., target format, retention interval, and response method), context (landmarks, expectations, and attribution of motion source), and observer (e.g., allocation of attention, eye movements, and psychopathology) that influence the direction and magnitude of displacement are reviewed. Specific conclusions regarding numerous variables that influence displacement (e.g., presence of landmarks or surrounding context), as well as broad-based conclusions regarding displacement in general (e.g., displacement does not reflect objective physical principles, may reflect aspects of naive physics, does not solely reflect eye movements, may involve some modular processing, and reflects high-level processes) are drawn. A possible computational theory of displacement is suggested in which displacement (1) helps bridge the gap between perception and action and (2) plays a critical part in localizing stimuli in the environment.  相似文献   

6.
When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.  相似文献   

7.
Freyd (1987; Finke & Freyd, 1985) suggested that representational momentum (i.e., forward displacement in memory for the location of a moving target) is impervious to error feedback (i.e., is modular or cognitively impenetrable), but studies supporting this claim might not have allowed sufficient opportunity for learning to occur. In the experiment reported here, participants were (a) naive regarding representational momentum, (b) informed about representational momentum but not instructed to counteract it, or (c) informed about representational momentum and instructed to counteract it. All participants exhibited significant displacement. However, participants informed about representational momentum exhibited less forward displacement than did naive participants due to a greater tendency to respond same to probes behind the true--same position. Possible mechanisms of compensation and the notion that displacement reflects both modular (cognitively impenetrable) and nonmodular (cognitively penetrable) components are addressed.  相似文献   

8.
人们对运动目标最终位置的记忆常常会向运动方向发生偏移, 这种偏移被称为“表征动量”。现有研究对表征动量的解释涉及从低水平的知觉加工到高水平的认知加工等多个方面。本研究采用不同材质和滚动声音的球体作为刺激材料, 考察高水平的质量表征对表征动量的影响以及知觉水平的眼动信息在其中的作用。实验1探讨了对目标质量的主观表征对眼动追踪和表征动量的影响。结果显示, 质量表征会同时影响眼动追踪和表征动量。实验2通过不同的提示线索控制眼动追踪, 进一步探讨眼动过度追踪对表征动量的影响。我们发现, 非自然追踪的条件下, 表征动量会减小, 且质量表征对表征动量的影响不再显著。本研究结果表明, 高水平的质量表征对表征动量的影响会通过知觉水平的眼动过度追踪起作用; 然而, 表征动量还受其它因素影响, 眼动信息并非决定表征动量的唯一因素。  相似文献   

9.
Centripetal force draws the eyes,not memory of the target,toward the center   总被引:1,自引:0,他引:1  
Many observers believe that a target will continue on a curved trajectory after exiting a spiral tube. Similarly, when observers were asked to localize the final position of a target moving on a circular orbit, displacement of the judged position in the direction of forward motion ("representational momentum") and toward the center of the orbit was observed (cf. T. L. Hubbard, 1996). The present study shows that memory displacement of targets on a circular orbit is affected by eye movements. Forward displacement was larger with ocular pursuit of the target, whereas inward displacement was larger with motionless eyes. The results challenge an account attributing forward and inward displacement to mental analogues of momentum and centripetal force, respectively.  相似文献   

10.
Freyd (1987; Finke & Freyd, 1985) suggested that representational momentum (i.e., forward displacement in memory for the location of a moving target) is impervious to error feedback (i.e., is modular or cognitively impenetrable), but studies supporting this claim might not have allowed sufficient opportunity for learning to occur. In the experiment reported here, participants were (a) naïve regarding representational momentum, (b) informed about representational momentum but not instructed to counteract it, or (c) informed about representational momentum and instructed to counteract it. All participants exhibited significant displacement. However, participants informed about representational momentum exhibited less forward displacement than did naïve participants due to a greater tendency to respond same to probes behind the true–same position. Possible mechanisms of compensation and the notion that displacement reflects both modular (cognitively impenetrable) and nonmodular (cognitively penetrable) components are addressed.  相似文献   

11.
Kerzel D 《Cognition》2003,88(1):109-131
Observers' judgments of the final position of a moving target are typically shifted in the direction of implied motion ("representational momentum"). The role of attention is unclear: visual attention may be necessary to maintain or halt target displacement. When attention was captured by irrelevant distractors presented during the retention interval, forward displacement after implied target motion disappeared, suggesting that attention may be necessary to maintain mental extrapolation of target motion. In a further corroborative experiment, the deployment of attention was measured after a sequence of implied motion, and faster responses were observed to stimuli appearing in the direction of motion. Thus, attention may guide the mental extrapolation of target motion. Additionally, eye movements were measured during stimulus presentation and retention interval. The results showed that forward displacement with implied motion does not depend on eye movements. Differences between implied and smooth motion are discussed with respect to recent neurophysiological findings.  相似文献   

12.
After viewing an object in an implied rotation, subjects' short-term visual memory for the object's position is distorted in the direction of rotation. Previous accounts of this representational momentum effect have emphasized the analogy to physical momentum. This study provides a more general perspective: Position memory is influenced by anticipatory processes related to the future event course. In Experiment 1, subjects are presented with an implied periodical event in which a rectangle rotates back and forth. When a direction change in the implied rotation can be anticipated, memory distortion size drops back to zero. Experiment 2 rejects an alternative explanation for the findings of Experiment 1 in terms of enhanced position memory caused by repeated presentations of the memory pattern orientation within the same trial. In Experiment 3, the periods of the implied event are marked by changes in velocity rather than direction. The anticipation of a sudden velocity increase leads to a larger memory shift. We conclude that the perceptual system anticipates the event course on the basis of a representation of the higher order event structure rather than the local motion characteristics.  相似文献   

13.
Observers viewed a moving target, and after the target vanished, indicated either the initial position or the final position of the target. In Experiment 1, an auditory tone cued observers to indicate either the initial position or the final position; in Experiment 2, different groups of observers indicated the initial position or the final position. Judgments of the initial position were displaced backward in the direction opposite to motion, and judgments of the final position were displaced forward in the direction of motion. The data suggest that the remembered trajectory is longer than the actual trajectory, and the displacement pattern is not consistent with the hypothesis that representational momentum results from a distortion of memory for the location of a trajectory.  相似文献   

14.
When a moving target vanishes abruptly, participants judge its final position as being ahead of its actual final position, in the direction of motion (representational momentum; Freyd & Finke, 1984). In the present study, we presented illusory motion and examined whether or not forward displacement was affected by the perceived direction and speed of the target. Experiments 1A and 1B showed that an illusory direction of movement of a target was perceived, and Experiment 2 showed that an illusory speed of a moving target was observed. However, neither the direction nor the magnitude of forward displacement was affected by these illusions. Therefore, it was suggested that the mechanism underlying forward displacement (or some extrapolation processing) uses different motion signals than does the perceptual mechanism.  相似文献   

15.
翟坤  张志杰 《心理科学》2013,36(1):51-56
研究结合线索提示和表征动量范式,实验1、2均采用2有无线索(有线索,无线索)×4诱导期间时距(1250ms,1750ms,2250ms,2750ms)混合实验设计,探讨线索呈现的加工阶段和时距对表征动量的影响。实验1恒定保持间隔时距,在不同时距的诱导期间呈现线索,发现线索主效应不显著,但表征动量呈减小趋势;时距主效应不显著。实验2变化诱导时距,在恒定的保持间隔呈现线索,发生向后偏移现象,线索主效应显著;时距主效应不显著。研究结果表明,随着注意的增加,表征动量效应减小;注意时距不显著影响表征动量,而注意阶段显著影响表征动量。研究结果为表征动量的双加工理论提供了实证支持。  相似文献   

16.
An observer's memory for the final position of a moving object is shifted forward in the direction of that object's motion. It is called representational momentum (RM). This study addressed stimulus-specific effects on RM. In Experiment 1, participants showed larger memory shift for an object moving in its typical direction of motion than when it moved in a nontypical direction of motion. In Experiment 2, participants indicated larger memory shift for a pointed pattern moving in the direction of its point than when it moved in the opposite direction. In Experiment 3, we again examined the influences of knowledge about objects' typical motions and the pointedness of objects, because we did not control the shape (pointedness) of objects in Experiment 1. The results showed that only pointedness affected the magnitude of memory shift and that the effect was smaller than the momentum effect.  相似文献   

17.
Representational momentum is a positive memory distortion for an object's final position following the presentation of an implied event (J.J. Freyd, 1987). Positive memory distortions occur when observers accept test positions beyond the final presented position, or forward along the implied trajectory, as the same more readily than positions behind the final position. Four experiments explored implied events depicting rotations about various depth axes in shaded and silhouette conditions. Positive memory distortions were observed for all depth rotations under certain shading conditions, with some differences in the size of the distortion between axes. No directional effects (e.g., right vs. left) were observed. The overall positive memory distortions observed for depth rotations contrasted with the negative distortions previously observed for translation motion in depth (T.L. Hubbard, 1995 ).  相似文献   

18.
Localization of moving sound   总被引:3,自引:0,他引:3  
The final position of a moving sound source usually appears to be displaced in the direction of motion. We tested the hypothesis that this phenomenon, termed auditory representational momentum, is already emerging during, not merely after, the period of motion. For this purpose, we investigated the localization of a moving sound at different points in time. In a dark anechoic environment, an acoustic target moved along the frontal horizontal plane. In the initial, middle, or final phase of the motion trajectory, subjects received a tactile stimulus and determined the current position of the moving target at the moment of the stimulus by performing either relative-judgment or pointing tasks. Generally, in the initial phase of the auditory motion, the position was perceived to be displaced in the direction of motion, but this forward displacement disappeared in the further course of the motion. When the motion stimulus had ceased, however, its final position was again shifted in the direction of motion. The latter result suggests that representational momentum in spatial hearing is a phenomenon specific to the final point of motion. Mental extrapolation of past trajectory information is discussed as a potential source of this perceptual displacement.  相似文献   

19.
The final position of a moving sound source usually appears to be displaced in the direction of motion. We tested the hypothesis that this phenomenon, termed auditory representational momentum, is already emerging during, not merely after, the period of motion. For this purpose, we investigated the localization of a moving sound at different points in time. In a dark anechoic environment, an acoustic target moved along the frontal horizontal plane. In the initial, middle, or final phase of the motion trajectory, subjects received a tactile stimulus and determined the current position of the moving target at the moment of the stimulus by performing either relative-judgment or pointing tasks. Generally, in the initial phase of the auditory motion, the position was perceived to be displaced in the direction of motion, but this forward displacement disappeared in the further course of the motion. When the motion stimulus had ceased, however, its final position was again shifted in the direction of motion. The latter result suggests that representational momentum in spatial hearing is a phenomenon specific to the final point of motion. Mental extrapolation of past trajectory information is discussed as a potential source of this perceptual displacement.  相似文献   

20.
翟坤  张志杰 《心理科学》2012,35(6):1309-1314
为揭示注意对表征动量的影响机制,我们结合线索提示和表征动量范式,通过两个实验比较高、低相关线索分别在诱导期间与保持间隔呈现对表征动量的影响,结果发现:(1)高相关线索的时间特性主效应不显著,最终位置均发生边缘性的向前偏移。(2)低相关线索呈现在诱导期间时,表征动量显著;呈现在保持间隔时,发生向后偏移。这些表明,随着注意增大,表征动量减小;高相关线索更有利于定位,而低相关线索易受时间特性的影响。研究结果验证表征动量的双加工理论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号