首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three experiments were conducted to examine whether timing processes can be shared by continuous tapping and drawing tasks. In all 3 experiments, temporal precision in tapping was not related to temporal precision in continuous drawing. There were modest correlations among the tapping tasks, and there were significant correlations among the drawing tasks. In Experiment 3, the function relating timing variance to the square of the observed movement duration for tapping was different from that for drawing. The conclusions drawn were that timing is not an ability to be shared by a variety of tasks but instead that the temporal qualities of skilled movement are the result of the specific processes necessary to produce a trajectory. These results are consistent with the idea that timing is an emergent property of movement.  相似文献   

2.
We tested the response dynamics of the evaluative priming effect (i.e. facilitation of target responses following evaluatively congruent compared with evaluatively incongruent primes) using a mouse tracking procedure that records hand movements during the execution of categorisation tasks. In Experiment 1, when participants performed the evaluative categorisation task but not the non-evaluative semantic categorisation task, their mouse trajectories for evaluatively incongruent trials curved more toward the opposite response than those for evaluatively congruent trials, indicating the emergence of evaluative priming effects based on response competition. In Experiment 2, implementing a task-switching procedure in which evaluative and non-evaluative categorisation tasks were intermixed, we obtained reliable evaluative priming effects in the non-evaluative semantic categorisation task as well as in the evaluative categorisation task when participants assigned attention to the evaluative stimulus dimension. Analyses of hand movements revealed that the evaluative priming effects in the evaluative categorisation task were reflected in the mouse trajectories, while evaluative priming effects in the non-evaluative categorisation tasks were reflected in initiation times (i.e. the time elapsed between target onset and first mouse movement). Based on these findings, we discuss the methodological benefits of the mouse tracking procedure and the underlying processes of evaluative priming effects.  相似文献   

3.
To take advantage of the increasing number of in-vehicle devices, automobile drivers must divide their attention between primary (driving) and secondary (operating in-vehicle device) tasks. In dynamic environments such as driving, however, it is not easy to identify and quantify how a driver focuses on the various tasks he/she is simultaneously engaged in, including the distracting tasks. Measures derived from the driver’s scan path have been used as correlates of driver attention. This article presents a methodology for analyzing eye positions, which are discrete samples of a subject’s scan path, in order to categorize driver eye movements. Previous methods of analyzing eye positions recorded in a dynamic environment have relied completely on the manual identification of the focus of visual attention from a point of regard superimposed on a video of a recorded scene, failing to utilize information regarding movement structure in the raw recorded eye positions. Although effective, these methods are too time consuming to be easily used when the large data sets that would be required to identify subtle differences between drivers, under different road conditions, and with different levels of distraction are processed. The aim of the methods presented in this article are to extend the degree of automation in the processing of eye movement data by proposing a methodology for eye movement analysis that extends automated fixation identification to include smooth and saccadic movements. By identifying eye movements in the recorded eye positions, a method of reducing the analysis of scene video to a finite search space is presented. The implementation of a software tool for the eye movement analysis is described, including an example from an on-road test-driving sample.  相似文献   

4.
How is an aiming movement toward a visual target amended when the target suddenly steps to a new position just before or after the movement has started? Three hypotheses are examined: (1) the initial movement needs to be actively terminated before the new movement can be planned and executed, (2) substitution of the initial target position code results, after a normal RT, in the simultaneous termination of the initial movement and initiation of the movement to the new target position, or (3) a second movement from the initial to the second target is initiated after a normal RT, and superimposed on the ongoing movement toward the initial target. The substitution hypothesis assumes a highly continuous and parallel mode of operation of the perceptual-motor system, whereas the other hypotheses assume a distinctly discrete mode of operation. Detailed analyses of double-step movement trajectories clearly favored the substitution hypothesis. These results are discussed with reference to current views on motor control, overlapping-task performance, and the discrete-continuous issue. It is argued that the nature of the perception-action interface depends on the ideomotor compatibility of the task. Perceptual and motor processes operate in a highly continuous and parallel fashion in ideomotor compatible tasks, whereas the interposition of a limited-capacity response selection mechanism results in a discrete and intermittent mode of communication between these processes in non-ideomotor compatible tasks.  相似文献   

5.
Frequency characteristics of head stabilization were examined during locomotor tasks in healthy young adults(N = 8) who performed normal walking and 3 walking tasks designed to produce perturbations primarily in the horizontal plane. In the 3 walking tasks, the arms moved in phase with leg movement, with abnormally large amplitude, and at twice the frequency of leg movement. Head-in-space angular velocity was examined at the predominant frequencies of trunk motion. Head movements in space occurred at low frequencies (< 4.0 Hz) in all conditions and at higher frequencies (> 4.0 Hz) when the arms moved at twice the frequency of the legs. Head stabilization strategies were determined from head-on-trunk with respect to trunk frequency profiles derived from angular velocity data. During natural walking at low frequencies (< 3.0 Hz), head-on-trunk movement was less than trunk movement. At frequencies 3.0 Hz or greater, equal and opposite compensatory movement ensured head stability. When arm swing was altered, compensatory movement guaranteed head stability at all frequencies. Head stabilization was successful for frequencies up to 10.0 Hz during locomotor tasks. Maintaining head stability at high frequencies during voluntary tasks suggests that participants used feedforward mechanisms to coordinate head and trunk movements. Maintenance of head stability during dynamic tasks allows optimal conditions for vestibulo-ocular reflex function.  相似文献   

6.
Frequency characteristics of head stabilization were examined during locomotor tasks in healthy young adults (N = 8) who performed normal walking and 3 walking tasks designed to produce perturbations primarily in the horizontal plane. In the 3 walking tasks, the arms moved in phase with leg movement, with abnormally large amplitude, and at twice the frequency of leg movement. Head-in-space angular velocity was examined at the predominant frequencies of trunk motion. Head movements in space occurred at low frequencies (< 4.0 Hz) in all conditions and at higher frequencies (> 4.0 Hz) when the arms moved at twice the frequency of the legs. Head stabilization strategies were determined from head-on-trunk with respect to trunk frequency profiles derived from angular velocity data. During natural walking at low frequencies (< 3.0 Hz), head-on-trunk movement was less than trunk movement. At frequencies 3.0 Hz or greater, equal and opposite compensatory movement ensured head stability. When arm swing was altered, compensatory movement guaranteed head stability at all frequencies. Head stabilization was successful for frequencies up to 10.0 Hz during locomotor tasks Maintaining head stability at high frequencies during voluntary tasks suggests that participants used feedforward mechanisms to coordinate head and trunk movements. Maintenance of head stability during dynamic tasks allows optimal conditions for vestibulo-ocular reflex function.  相似文献   

7.
The effects of instructed movement speed were investigated in two experiments. First, rapid-timing and single-aiming movement tasks were compared. Unlike rapid timing, single aiming implies spatial accuracy. The aim of the first experiment was twofold: (a) to examine whether the requirement of accurate placement termination in single aiming affects the negative relationship between instructed average velocity and reaction time found in rapid timing, and (b) to test the speed-accuracy relationships predicted by the symmetric impulse variability model of these movement tasks. For this purpose, four average velocities (5, 24, 75, and 140 cm/s) were investigated in both types of movement tasks in a two-choice reaction task. The effects of average velocity on reaction time were similar in both single-aiming and rapid-timing tasks, and the predicted linear relationship between instructed average velocity and spatial accuracy was not found. The results suggest that the movement control mode, that is, open loop or closed loop, interferes with effects of instructed average velocity. The movement control mode explanation was confirmed in the second experiment with respect to the effect of paired velocities on reaction time. It is argued that the type of movement control mode must be considered in the interpretation of effects of instructed average velocity on reaction time and spatiotemporal measures.  相似文献   

8.
Children and adults with disabilities frequently rely on computers to complete written tasks. Those with significant motor limitations typically use alternative computer-input devices since the traditional keyboard and mouse are insufficient to accommodate their abilities. For persons unable to isolate their fingers, input devices controlled by movements of the head or whole hand or arm movements may be among the options considered. This study investigated the performance of a head-operated device and expanded membrane cursor keys for text entry. Data from 24 young adults indicated the head-operated device performed significantly faster given reduced cognitive demands for device operation, increased stimulus-response compatibility, and simplicity of movement. Use of the expanded membrane cursor keys resulted in significantly lower error rates. No significant differences in comfort or ease of use were reported for the two devices. The relative performance of device options for users sharing similar motor challenges provides rehabilitation specialists with important clinical information.  相似文献   

9.
Remote cooperation can be improved by transferring the gaze of one participant to the other. However, based on a partner's gaze, an interpretation of his communicative intention can be difficult. Thus, gaze transfer has been inferior to mouse transfer in remote spatial referencing tasks where locations had to be pointed out explicitly. Given that eye movements serve as an indicator of visual attention, it remains to be investigated whether gaze and mouse transfer differentially affect the coordination of joint action when the situation demands an understanding of the partner's search strategies. In the present study, a gaze or mouse cursor was transferred from a searcher to an assistant in a hierarchical decision task. The assistant could use this cursor to guide his movement of a window which continuously opened up the display parts the searcher needed to find the right solution. In this context, we investigated how the ease of using gaze transfer depended on whether a link could be established between the partner's eye movements and the objects he was looking at. Therefore, in addition to the searcher's cursor, the assistant either saw the positions of these objects or only a grey background. When the objects were visible, performance and the number of spoken words were similar for gaze and mouse transfer. However, without them, gaze transfer resulted in longer solution times and more verbal effort as participants relied more strongly on speech to coordinate the window movement. Moreover, an analysis of the spatio-temporal coupling of the transmitted cursor and the window indicated that when no visual object information was available, assistants confidently followed the searcher's mouse but not his gaze cursor. Once again, the results highlight the importance of carefully considering task characteristics when applying gaze transfer in remote cooperation.  相似文献   

10.
We have hypothesized a distinction between the processes required to control the timing of different classes of periodic movements. In one class, salient events mark successive cycles. For these movements, we hypothesize that the temporal goal is a requisite component of the task representation, what we refer to as event-based timing. In the other class, the successive cycles are produced continuously. For these movements, alternative control strategies can optimize performance, allowing timing to be emergent. In a previous study, patients with cerebellar lesions were found to be selectively impaired on event-based timing tasks; they were unimpaired on a continuously produced task. In the present study, patients with Parkinson's disease were tested on repetitive movement tasks in which timing was either event-based or emergent. Temporal variability on either type of task did not differ between on- and off-medication sessions for the Parkinson's patients nor did patient performance differ from that of controls. These results suggest that the basal ganglia play a minimal role in movement timing and that impairments on event-based timing tasks are specific to cerebellar damage.  相似文献   

11.
Much recent research using discrete unimanual tasks has indicated that individuals with Down syndrome (DS) have more difficulty performing verbal-motor tasks as compared to visual-motor tasks (see Perceptual-Motor Behavior in Down Syndrome, Human Kinetics, Champaign, IL, 2000, p. 305 for a review). In continuous tasks, however, individuals with DS perform better when movement is guided by auditory information compared to visual information (Downs Syndr.: Res. Prac. 4 (1996) 25; J. Sport Exercise Psy. 22 (2000) S90). The aim of the present study was to investigate if there are any differences for adults with DS between visual, auditory and verbal guidance in a continuous bimanual task. Ten adults with DS, 10 adults without DS and 10 typically developing children drew lines bimanually towards the body (down) and away from the body (up) following three different guidance conditions: visual (flashing line), auditory (high tone, low tone), and verbal (“up”, “down”). All participants produced mostly in-phase movements and were close to the 1000 ms target time for all guidance conditions. The adults with DS, however, displayed greater variability in their movement time, movement amplitude and bimanual coordination than adults without DS. For all groups, the left hand was slower and more variable in producing the lateral movements than the right hand. The results regarding guidance information suggest that auditory information is beneficial for repetitive bimanual tasks for adults with DS. Possible mechanisms that cause these results will be discussed.  相似文献   

12.
Squirrel monkeys (Saimiri sciureus) and titi monkeys (Callicebus moloch) were studied in tasks involving reaching for food in near space (arm's reach). Although performance by monkeys of the two species differed in several ways familiar from previous studies, the species did not differ in the tendency to adopt a habitual position or limb during reaching. The findings contrast with previous work on spatial preferences in these species in tasks involving movement of the whole body. Together with the results of previous studies on movement patterns in these two species, the findings are placed in a comparative psychological framework of the proximate sources of use of space in nature.  相似文献   

13.
Climbers were trained on two routes on a climbing wall, one vertical and one horizontal. The routes differed in the amount that could be seen from the start position, in the visibility of the holds (both of which were greater in the vertical climb), and in the need to use a range of hand and body configurations during the climb (which was greater in the horizontal climb); also the vertical climb was shorter than the horizontal climb. After training, subjects imagined climbing the routes under control conditions and with one of three secondary tasks derived from the working memory literature. The secondary tasks were dynamic visual noise, spatial tapping, and kinaesthetic suppression. Spatial tapping increased the duration of both routes; dynamic visual noise increased the duration on the vertical route, and kinaesthetic suppression increased duration on the horizontal route. The results are discussed in terms of the multiple forms of representation for action and the complexity of imagery for skilled movement. It is suggested that these working memory tasks may have a role in elucidating the demands of movement imagery under different conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Patients with Parkinson's disease exhibit a number. of abnormalities that seem more marked in circumstances in which stimulus and response are predictable in advance. In this article, we consider the prolonged movement onset latencies exhibited by Parkinsonian subjects in the tracking of predictable targets and in the simple reaction time (RT) task. It has been suggested that the performance impairments on both these tasks stem from a common planning deficit. We argue that the Parkinsonian tendency to refrain from predictive tracking cannot be ascribed to an inability to anticipate due to a planning deficit. The data are better accommodated by our alternative thesis that when Parkinsonians' response initiation lags behind that of normal subjects, this is a result of a strategic adaptation to an impairment of the accuracy of movements guided by an internal representation of the target. Our conclusion, that the primary impairment of predictive tracking is one of inaccurate movement execution rather than delayed response initiation, precludes postulation of the same deficit as a source of the selective prolongation of simple RT sometimes found in Parkinson's disease. Moreover, an analysis of the processing demands of the two tasks shows that the predictability that characterizes each of them is quite different in nature. Hence, the impairments in predictive tracking and simple RT tasks are unlikely to stem from a single mechanism that is defective in Parkinson's disease.  相似文献   

15.
Different interceptive tasks and modes of interception (hitting or capturing) do not necessarily involve similar control processes. Control based on preprogramming of movement parameters is possible for actions with brief movement times but is now widely rejected; continuous perceptuomotor control models are preferred for all types of interception. The rejection of preprogrammed control and acceptance of continuous control is evaluated for the timing of rapidly executed, manual hitting actions. It is shown that a preprogrammed control model is capable of providing a convincing account of observed behavior patterns that avoids many of the arguments that have been raised against it. Prominent continuous perceptual control models are analyzed within a common framework and are shown to be interpretable as feedback control strategies. Although these models can explain observations of on-line adjustments to movement, they offer only post hoc explanations for observed behavior patterns in hitting tasks and are not directly supported by data. It is proposed that rapid manual hitting tasks make up a class of interceptions for which a preprogrammed strategy is adopted--a strategy that minimizes the role of visual feedback. Such a strategy is effective when the task demands a high degree of temporal accuracy.  相似文献   

16.
Measures of performance rates in speech-like or volitional nonspeech oral motor tasks are frequently used to draw inferences about articulation rate abnormalities in patients with neurologic movement disorders. The study objective was to investigate the structural relationship between rate measures of speech and of oral motor behaviors different from speech. A total of 130 patients with neurologic movement disorders and 130 healthy subjects participated in the study. Rate data was collected for oral reading (speech), rapid syllable repetition (speech-like), and rapid single articulator movements (nonspeech). The authors used factor analysis to determine whether the different rate variables reflect the same or distinct constructs. The behavioral data were most appropriately captured by a measurement model in which the different task types loaded onto separate latent variables. The data on oral motor performance rates show that speech tasks and oral motor tasks such as rapid syllable repetition or repetitive single articulator movements measure separate traits.  相似文献   

17.
Difficult tasks are commonly equated with complex tasks across many behaviors. Motor task difficulty is traditionally defined via Fitts’ law, using evaluation criteria based on spatial movement constraints. Complexity of data is typically evaluated using non-linear computational approaches. In this project, we investigate the potential to evaluate task difficulty via behavioral (motor performance) complexity in a Fitts-type task. Use of non-linear approaches allows for inclusion of many features of motor actions that are not currently included in the Fitts-type paradigm. Our results indicate that tasks defined as more difficult (using Fitts movement IDs) are not associated with complex motor behaviors; rather, an inverse relationship exists between these two concepts. Use of non-linear techniques allowed for the detection of behavioral differences in motor performance over the entire action trajectory in the presence of action errors and among neutrally co-constrained effectors not detected using traditional Fitts’-type analyses utilizing movement time measures. Our findings indicate that task difficulty may potentially be inferred using non-linear measures, particularly in ecological situations that do not obey the Fitts-type testing paradigm. While we are optimistic regarding these initial findings, further work is needed to assess the full potential of the approach.  相似文献   

18.
Why are human observers particularly sensitive to human movement? Seven experiments examined the roles of visual experience and motor processes in human movement perception by comparing visual sensitivities to point-light displays of familiar, unusual, and impossible gaits across gait-speed and identity discrimination tasks. In both tasks, visual sensitivity to physically possible gaits was superior to visual sensitivity to physically impossible gaits, supporting perception-action coupling theories of human movement perception. Visual experience influenced walker-identity perception but not gait-speed discrimination. Thus, both motor experience and visual experience define visual sensitivity to human movement. An ecological perspective can be used to define the conditions necessary for experience-dependent sensitivity to human movement.  相似文献   

19.
The importance of genetic factors in autism has prompted the development of mutant mouse models to advance our understanding of biological mechanisms underlying autistic behaviors. Mouse models of human neuropsychiatric diseases are designed to optimize (1) face validity, i.e., resemblance to the human symptoms; (2) construct validity, i.e., similarity to the underlying causes of the disease; and (3) predictive validity, i.e., expected responses to treatments that are effective in the human disease. There is a growing need for mouse behavioral tasks with all three types of validity for modeling the symptoms of autism. We are in the process of designing a set of tasks with face validity for the defining features of autism: deficits in appropriate reciprocal social interactions, deficits in verbal social communication, and high levels of ritualistic repetitive behaviors. Social approach is tested in an automated three-chambered apparatus that offers the subject a choice between a familiar environment, a novel environment, and a novel environment containing a stranger mouse. Preference for social novelty is tested in the same apparatus, with a choice between the start chamber, the chamber containing a familiar mouse, and the chamber containing a stranger mouse. Social communication is evaluated by measuring the ultrasonic distress vocalizations emitted by infant mouse pups and the parental response of retrieving the pup to the nest. Resistance to change in ritualistic repetitive behaviors is modeled by forcing a change in habit, including reversal of the spatial location of a reinforcer in a T-maze task and in the Morris water maze. Mouse behavioral tasks that may model additional features of autism are discussed, including tasks relevant to anxiety, seizures, sleep disturbances, and sensory hypersensitivity. Applications of these tests include (1) behavioral phenotyping of transgenic and knockout mice with mutations in genes relevant to autism, (2) characterization of mutant mice derived from random chemical mutagenesis, (3) DNA microarray analyses of genes in inbred strains of mice that differ in social interaction, social communication and resistance to change in habit, and (4) evaluation of proposed therapeutics for the treatment of autism.  相似文献   

20.
Movement to spatial targets that can, in principle, be carried out by more than one effector can be distinguished from movements that involve specific configurations of body parts. The experiments reported here investigate memory span for a series of hand configurations and memory span for a series of hand movements to spatial locations. Spans were produced normally, or in conditions in which a suppression task was carried out on the right or the left hand while the movements to be remembered were presented. All movements were recalled using the right hand. There were two suppression tasks. One involved repeatedly squeezing a tube and so changing the configuration of the hand, and the other involved tapping a repeated series of spatial targets. The spatial tapping task interfered with span for spatial locations when it was presented on either the right or the left hand but did not affect span for movement pattern. The movement suppression task interfered with memory for movement pattern when it was presented on either the right or the left hand, but did not interfere with span for spatial locations. It is concluded that memory for movement configurations involves different processes from those used in spatial tasks and that there may be a need for a subsystem of working memory that is specific for movement configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号