首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence suggests that rats require an intact hippocampus in order to recognize familiar objects when they encounter them again in a different context. The two experiments reported here further examined how changes in context affect rats' performance on the novel-object preference (NOP) test of object-recognition memory, and how those effects interact with the effects of HPC damage. Rats with HPC lesions and control rats received NOP testing in either the same context in which they had previously encountered sample objects, or in a different but equally familiar context. In Experiment 1, the two contexts had very few overlapping cues within or outside the apparatus; thus, the differences between them were global. Consistent with previous results, control rats showed a novel-object preference in both the unchanged and (globally) changed contexts, whereas rats with HPC lesions displayed a preference only in the unchanged context. In Experiment 2, the context shift included only local features proximal to the test objects. The main results were the reverse of Experiment 1--rats with HPC lesions displayed a novel-object preference in both the unchanged and (locally) changed contexts, whereas control rats displayed a preference only in the unchanged context. The findings are consistent with the view that HPC damage does not cause a general inability to recognize objects, nor an inability to encode or store a representation of the context in which the objects are encountered. They suggest instead that HPC damage impairs the ability to remember specific locations of familiar objects within a particular context.  相似文献   

2.
We present evidence that certain learning parameters can make a memory, even a very recent one, become independent of the hippocampus. We confirm earlier findings that damage to the hippocampus causes severe retrograde amnesia for context memories, but we show that repeated learning sessions create a context memory that is not vulnerable to the damage. The findings demonstrate that memories normally dependent on the hippocampus are incrementally strengthened in other memory networks with additional learning. The latter provides a new account for patterns of hippocampal retrograde amnesia and how memories may become independent of the hippocampus.Contextual fear conditioning can be supported by two neural systems, one that contains the hippocampus (HPC), and one that does not. Evidence for this assertion comes from studies in which the HPC, in rats, is damaged either before or after the contextual fear conditioning. Extensive damage to the HPC before conditioning has little effect on contextual fear conditioning (Maren et al. 1997; Frankland et al. 1998; Wiltgen et al. 2006). This result can only mean that there is a non-HPC memory system that can support fear of context. In contrast, there is unequivocal evidence that moderate to extensive damage to the HPC soon after learning severely impairs the ability of the conditioning context to evoke fear, suggesting that the HPC normally makes a major contribution to this type of memory (Kim and Fanselow 1992; Maren et al. 1997; Frankland et al. 1998; Anagnostaras et al. 1999; Debiec et al. 2002; Lehmann et al. 2007b; Sutherland et al. 2008; Wang et al. 2009).The dissociable effects of pre- and post-training HPC damage on contextual fear conditioning have been interpreted as suggesting that: (1) When the HPC is intact during learning it interferes with other systems and prevents them from acquiring an independent contextual fear conditioning memory, and (2) when the HPC is absent, these other systems are released from this interference and are able to rapidly acquire an independent memory (Maren et al. 1997; Frankland et al. 1998; Fanselow and Poulos 2004; Driscoll et al. 2005; Lehmann et al. 2006; Sutherland et al. 2006). The latter interference from the HPC on the other memory systems has been termed overshadowing. Supplemental Figure S1 depicts data from our laboratory demonstrating the overshadowing phenomenon and the dissociable effects of HPC damage induced before and after contextual fear conditioning.Very little, however, is known about the parameters determining the extent to which the HPC system interferes with the non-HPC system for control over contextual fear. The purpose of the current study is to provide some insight into this issue. Typically, contextual fear conditioning in rats is conducted in a single conditioning session in which a configuration of static background cues is paired with several footshocks. When returned to the conditioning context, rats display several species-specific defensive responses including freezing (i.e., absence of movement except for breathing). Several theorists have proposed that non-HPC systems are more likely to be recruited when there are multiple experiences with similar events, which, in turn, would mitigate the necessity of the HPC for memory expression (O''Keefe and Nadel 1978; Sherry and Schacter 1987; McClelland et al. 1995; O''Reilly and Rudy 2001; White and McDonald 2002). Accordingly, we hypothesized that repeated contextual fear conditioning sessions separated by hours and days would overcome the HPC interference or overshadowing effect. In other words, with repeated learning sessions, enough information would be incrementally captured by the non-HPC system to support a contextual fear memory that would survive complete damage to the HPC.Adult male rats received 11 fear-conditioning sessions across 6 d. In each session, they were placed in a context and received mild footshocks (Shock Context). Concurrently, the rats were exposed 10 times to another context in which they never received shock (No-Shock Context). The No-Shock Context served as a control condition to measure whether the rats simply showed generalized fear or could show context-specific memory. Within 72 h following the last conditioning session, rats either received sham surgery or complete lesions of the HPC using the neurotoxin N-methyl-d-aspartic acid (NMDA) (Lehmann et al. 2007a). Rats were then tested for retention in both the Shock and No-Shock Contexts in a counterbalanced order. In addition, in a single learning episode, another group of rats received a matching number of shocks (i.e., 12 shocks) and context exposure (i.e., 17 min), and then received surgery 7–10 d after conditioning. The latter interval is identical to the interval between the initial conditioning session and surgery in the repeated learning condition. Figure 1 illustrates and describes the design of the experiments.Open in a separate windowFigure 1.Illustration of the experimental design used in (A) the single conditioning session and (B) repeated conditioning session experiments. In A the rats were initially placed in the conditioning chamber for 17 min and received the first of 12 footshocks (1 mA/2 sec) at the 300-sec mark, and then one every following 58 sec after shock offset. Seven to 10 d later, the rats either received sham or HPC damage (Sx). Approximately 10 d after, the rats were returned to the chamber to assess freezing over a 5-min retention test. In B the rats were placed initially in the conditioning chamber for 1 min and received a shock at the 45-sec mark (Shock Context). Approximately 45 min later, the rats were placed in a different chamber for 1 min and did not receive shock (No-Shock Context). The procedure was repeated twice daily for five consecutive days, and the Shock and No-Shock chamber order was counterbalanced according to the principles of a Latin Square design. The rats then received sham or HPC damage 1–3 d later. The rats'' retention was assessed in both contexts ∼10 d after surgery in both the Shock and No-Shock Context in a counterbalanced order with a 24-h span between tests. Importantly, the number of shocks, context exposure time, and interval between initial learning and surgery were matched between both experiments.When all shocks were delivered in a single session, HPC damage caused profound retrograde amnesia. As illustrated in Figure 2A, the HPC rats displayed significantly less freezing than control rats during the retention test (t(8) = 23.895, P < 0.001). This result replicates all previous studies in which the HPC was damaged days after a single contextual fear conditioning training session (Kim and Fanselow 1992; Maren et al. 1997; Frankland et al. 1998; Anagnostaras et al. 1999; Debiec et al. 2002; Lehmann et al. 2007b; Sutherland et al. 2008).Open in a separate windowFigure 2.Mean (± SEM) percent time freezing by Sham and HPC rats during the retention test of the (A) single conditioning (12 shocks) experiment and (B) repeated conditioning session experiment. In A the HPC rats showed significantly less freezing (P < 0.001) than the Sham rats, suggesting that the damage caused profound retrograde amnesia for contextual fear conditioning learned in a single session 7–10 d before surgery. In B the performance of the HPC rats did not significantly differ from the Sham rats, and they exhibited significantly more freezing in the Shock Context than the No-Shock Context (P < 0.001). Consequently, repeated conditioning sessions prevented the retrograde amnesic effects normally observed in contextual fear conditioning following HPC damage, suggesting that other neural networks were now able to support the memory.In striking contrast, memory for contextual fear conditioning was spared when the HPC was damaged after repeated conditioning sessions. Figure 2B shows the percent time spent freezing during the retention test in the Shock and No-Shock Contexts. An ANOVA with between-group factor (Lesion: Sham and HPC) and within-group factor (Context: Shock and No-Shock) revealed a significant main effect of Context (F(1,14) = 84.731, P < 0.001), indicating that the rats displayed higher levels of freezing in the Shock than in the No-Shock Context. The effect of Lesion (F(1,14) = 4.280, P = 0.058) was not significant, nor was the Lesion × Context interaction (F(1,14) = 0.877, P = 0.369), suggesting that extensive HPC damage did not impair memory. The tendency for an effect of Lesion is due to the HPC rats freezing less than the Sham rats in the No-Shock Context (P = 0.06) rather than freezing less in the Shock Context (P = 0.457).The repeated conditioning sessions clearly enabled a contextual fear representation to be established in non-HPC memory systems. However, it is surprising that the HPC damage did not impair the ability to discriminate between the Shock and No-Shock Context, because evidence suggests that context discrimination is dependent on the HPC (see Moscovitch et al. 2006). Indeed, studies of rats with HPC damage induced before learning have shown that contextual fear conditioning is acquired quickly by non-HPC systems in a single session, but the ability to discriminate between the training context and a new context is lost (Frankland et al. 1998; Antoniadis and McDonald 2000; Winocur et al. 2007). Hence, it is significant in the present study that the HPC damage did not impair context discrimination abilities in the rats that received repeated learning episodes. The latter appear to have established a context representation, outside of the HPC, that was not bereft of details. Yet, one should consider that the rats in the repeated sessions experiment received experience in both the Shock and No-Shock Contexts prior to surgery, and this discrimination training procedure may have established two different non-HPC representations. It remains possible that HPC damage would impair the ability to discriminate the Shock Context from a new context, which is what is found in anterograde amnesia studies (Frankland et al. 1998; Antoniadis and McDonald 2000; Winocur et al. 2007). To address this possibility, a new experiment examined whether HPC-damaged rats could discriminate the Shock Context from a Novel Context. Rats were trained with the same repeated learning protocol as described earlier, with the exception that the rats were never placed in the No-Shock Context prior to surgery. One to 3 d following learning, the rats either received Sham or complete HPC damage. They were then tested for retention in the Shock and the Novel (i.e., No-Shock) Context in a counterbalanced order. Figure 3 shows the percent time spent freezing during the retention test in the Shock and Novel Contexts. An ANOVA with between-group factor (Lesion: Sham and HPC) and within-group factor (Context: Shock and Novel) revealed that the rats froze significantly more in the Shock than the Novel Context (F(1,10) = 57.393, P < 0.001). However, no significant difference was found between the HPC and Sham groups (F(1,10) = 0.597, P = 0.458) and the Lesion × Context interaction did not reach significance (F(1,10) = 0.123, P = 0.733). Thus, as in the previous repeated sessions experiment, the HPC damage did not cause retrograde amnesia for contextual fear conditioning and, more importantly, the HPC damage did not impair the ability to discriminate between the original context and new context.Open in a separate windowFigure 3.Mean (± SEM) percent time freezing by Sham and HPC rats in the Shock and Novel Contexts during the retention tests of the discrimination experiment. The rats exhibited significantly more freezing in the Shock than the Novel Context (P < 0.001), and the HPC rats did not significantly differ from the Sham rats, suggesting that the HPC-damaged rats remembered the specific meaning of the Shock Context as well as control rats. Hence, repeated conditioning sessions established a context-rich representation in non-HPC systems, which supports successful context discriminations.The absence of amnesia for contextual fear conditioning in the current study is not due to insufficient damage to the HPC. We calculated (see Lehmann et al. 2007b) that an average of 83% of the HPC was damaged across rats (smallest: 64%; largest: 90%) in the repeated learning experiments (see Supplemental material for more histological details). The amount of HPC damage is substantially more than that found in most studies reporting impairments for contextual fear conditioning following HPC damage (Kim and Fanselow 1992; Maren et al. 1997; Frankland et al. 1998; Anagnostaras et al. 1999; Debiec et al. 2002) and more than for the single-session experiment (average 76%) in which we currently report amnesia. Therefore, the amount of HPC damage inflicted in the rats in this study is certainly sufficient to disrupt HPC-dependent memories.Like others (Kim and Fanselow 1992; Maren et al. 1997; Frankland et al. 1998; Anagnostaras et al. 1999; Debiec et al. 2002; Lehmann et al. 2007b; Sutherland et al. 2008), we found that damage to the HPC after a single contextual fear-conditioning session involving multiple shocks produces profound retrograde amnesia for contextual fear conditioning. However, in two separate experiments, distributing shock across multiple conditioning sessions prevented this amnesia. In one case, the rats experienced Context–Shock pairings in one context and no shock in another context. Following this training, rats with damage to the HPC did not differ from control rats in the absolute amount of freezing in the training context nor in their ability to discriminate between the two contexts. In the second case, rats only received the multiple Context–Shock sessions. Rats with damage to the HPC could not be distinguished from control rats during the test in the training context or in their responses to a novel context. These findings provide new support for the general idea that contextual fear conditioning can be supported by both HPC and non-HPC systems. This conclusion is supported by (1) the finding that damage to the HPC following a single conditioning session virtually eliminates freezing during the test, implying the importance of the HPC system, and (2) that following multiple conditioning sessions, damage to the HPC has no effect on either contextual fear displayed in the training context or their ability to discriminate the training context from other contexts, suggesting the existence of non-HPC systems that can support contextual fear. The findings also reveal that the overshadowing or interference by the HPC over the non-HPC memory systems for control over contextual fear is not absolute. Following a single conditioning session, removal of the HPC produced a devastating retrograde amnesia, illustrating substantial overshadowing. However, distributing conditioning across several sessions completely attenuated the effects of damage to the HPC, revealing that non-HPC systems can support contextual fear conditioning despite the HPC, and revealed the importance of multiple sessions for this to occur.The overshadowing by the HPC is based on the familiar idea in associative learning at the behavioral level, where through a competitive process some of the cues that redundantly predict a reinforcer acquire the ability to generate strong conditioned responding, while other equally predictive, but less salient cues do not (Stout et al. 2003). Conditioning to the less potent cues proceeds more effectively if the more potent competitors are absent. Following the same principle, if the HPC representation is active, then learning in the non-HPC systems suffers strong interference. In contrast, in the absence of the HPC representation, learning in non-HPC systems is released from this interfering effect of the HPC. Thus, the learning rate in non-HPC networks is potently lowered by the activity of the HPC. However, with repeated learning, other structures, which are overshadowed by the HPC, may cumulatively build a representation that achieves HPC independence. The current findings clearly support this hypothesis, whereby repeated learning episodes incrementally established a contextual fear-conditioning representation outside of the HPC that mitigated the usual retrograde amnesic effects of HPC damage.One important question is where does the HPC interference occur? Biedenkapp and Rudy (2009) recently reported that the HPC competes with the basolateral region of the amygdala during fear conditioning. Previously, Guarraci et al. (1999) found that the amount of conditioned fear produced by training could be increased if the dopamine D1 receptor agonist SKF82958 was injected into the basolateral region. Biedenkapp and Rudy (2009) reasoned that if this is the area where the HPC interferes with non-HPC systems for the association with shock, then a local infusion of SKF82958 before a single session of contextual fear conditioning should attenuate the interference and allow the non-HPC system to gain more control over contextual fear. Their data supported this hypothesis, which leads to the possibility that with multiple conditioning sessions, the non-HPC system gradually gains association with these fear-supporting neurons in this region of the brain.Patients with bilateral damage to the HPC often exhibit temporally graded retrograde amnesia, such that recently acquired memories are lost, whereas remote memories, especially those acquired years before the damage, are more likely to be spared (Scoville and Milner 1957; Rempel-Clower et al. 1996). This pattern of amnesia is taken as evidence for temporally based systems consolidation, whereby over time the essential support for memories is “switched” from dependence on the HPC to neocortical networks (McClelland et al. 1995; Squire and Alvarez 1995; Anagnostaras et al. 2001; Meeter and Murre 2004; Squire et al. 2004; Wiltgen et al. 2004; Frankland and Bontempi 2005). Our research, however, points to another process for becoming independent of the HPC, a change in the strength of the representation in non-HPC systems during learning rather than a consolidation process linked to the passage of time since the learning episode. A study of a former London taxi driver with bilateral HPC damage alludes to this possibility (Maguire et al. 2006). This amnesic patient showed greater retrograde amnesia for roads that he used less commonly than the major arteries that he used regularly. Hence, greater exposure to the major arteries established memories in non-HPC systems, whereas roads with less exposure remained dependent on the HPC regardless of the age of the memory. Our findings add support to this view, because studies examining the effects of complete HPC damage after a single conditioning episode suggest that the HPC is permanently involved in contextual fear conditioning (Lehmann et al. 2007b; Sutherland et al. 2008); yet, with repeated learning episodes we clearly demonstrated that the memory rapidly becomes independent of the HPC. The latter is important because the process for memories becoming independent of the HPC need not require systems consolidation.In conclusion, this is the first example of intact contextual fear memories following complete HPC damage induced soon after learning. Importantly, repetition of the learning episode underlies the change in memory from HPC dependent to HPC independent. We argue that each learning episode incrementally establishes a representation in non-HPC memory systems—a representation that ultimately becomes sufficiently strong to support memory expression without the HPC. The current findings also demonstrate the critical need to consider learning parameters when discussing patterns of retrograde amnesia and the role of the HPC in memory.  相似文献   

3.
The retrograde effects of hippocampal lesions on spatial memory were studied. Rats were given a series of 48 place-navigation trials in an open-field water-maze followed, either 3 days or 14 weeks later, by ibotenic acid lesions of the hippocampus (HPC) or subiculum (SUB), or by sham-surgery (SHAM). Two weeks after surgery they were given a retention test without a hidden escape platform. There was a significant decline in performance with time in the SHAM group, but with the 14-week SHAM group performing significantly better than chance levels, whereas both lesioned groups performed at chance at both retention intervals. All rats were then retrained for 24 trials. SHAM rats escaped rapidly within 2 trials, suggesting a reactivation of memory rather than relearning. The HPC groups were severely impaired during retraining, with a developing trend towards better performance in the 3-day group. After 24 trials of training with the escape platform placed in the opposite quadrant of the pool, this new location was learned successfully by SHAM and SUB rats, but not by HPC rats. These results indicate that selective hippocampal formation lesions can cause deficits in retrieval but do not reveal a time-dependent gradient of memory consolidation.  相似文献   

4.
Memory representations are reactivated during slow-wave sleep (SWS) after learning, and these reactivations cause a beneficial effect of sleep for memory consolidation. Memory reactivations can also be externally triggered during sleep by associated cues which enhance the sleep-dependent memory consolidation process. Here, we compared in humans the influence of sleep periods (i) of 40min and (ii) of 90min without externally triggered reactivations and (iii) of externally triggered reactivations by an associated odor cue during a 40-min sleep period on the consolidation of previously learned hippocampus-dependent visuo-spatial memories. We show that external reactivation by an odor cue during the 40-min sleep period enhanced memory stability to the same extent as 90min of sleep without odor reactivation. In contrast, 40min of sleep without external reactivations were not sufficient to benefit memory. In the 90-min sleep condition, memory enhancements were associated with time spent in SWS and were independent of the presence or absence of REM sleep. These results suggest that the efficacy of hippocampus-dependent memory consolidation depends on the duration of sleep and particularly SWS. External reactivation cues can accelerate the consolidation process even during shorter sleep episodes.  相似文献   

5.
It has been shown that long-term potentiation (LTP) develops in the connection between the mediodorsal thalamus (MD) and the medial prefrontal cortex (mPFC) and between the hippocampus (HPC) and the mPFC following fear extinction, and correlates with extinction retention. However, recent lesion studies have shown that combined lesions of the MD and mPFC do not interfere with extinction learning and retention, while inactivation of the dorsal HPC disrupts fear extinction memory. Here we found in rats that immediate post-training HPC low-frequency stimulation (LFS) suppressed extinction-related LTP in the HPC-mPFC pathway and induced difficulties in extinction recall. HPC tetanus, applied several hours later, failed to re-establish mPFC LTP but facilitated recall of extinction. Delayed post-training HPC LFS also provoked mPFC depotentiation and difficulties with extinction recall. HPC tetanus abolished these two effects. We also found that damage to the mPFC induced fear return only in rats that received HPC LFS following extinction training. HPC tetanus also reversed this behavioral effect of HPC LFS in lesioned rats. These data suggest that the HPC interacts with the mPFC during fear extinction, but can modulate fear extinction independently of this interaction.  相似文献   

6.
Disruptions of fear extinction-related potentiation of synaptic efficacy in the connection between the hippocampus (HPC) and the medial prefrontal cortex (mPFC) have been shown to impair the recall of extinction memory. This study was undertaken to examine if chronic mild stress (CMS), which is known to alter induction of HPC–mPFC long-term potentiation, would also interfere with both extinction-related HPC–mPFC potentiation and extinction memory. Following fear conditioning (5 tone-shock pairings), rats were submitted to fear extinction (20 tone-alone presentations), which produced an increase in the amplitude of HPC–mPFC field potentials. HPC low-frequency stimulation (LFS), applied immediately after training, suppressed these changes and induced fear return during the retention test (5 tone-alone presentations). CMS, delivered before fear conditioning, did not interfere with fear extinction but blocked the development of extinction-related potentiation in the HPC–mPFC pathway and impaired the recall of extinction. These findings suggest that HPC LFS may provoke metaplastic changes in HPC outputs that may mimic alterations associated with a history of chronic stress.  相似文献   

7.
The hippocampal formation (HPC) mediates processes associated with learning, memory, anxiety and fear. The glutamate N-methyl-d-aspartate (NMDA)-receptor subtype is involved in many HPC functional processes related to learning and memory. Although not tested for the HPC, NMDA-receptor antagonists reduced fear and anxiety related responses when applied to other brain regions mediating defensive behaviour. Consequently, this study evaluated the effects of ventral or dorsal HPC application of the NMDA-receptor antagonist, AP5, in rats submitted to the Trial 1/Trial 2 elevated plus-maze (EPM) task. Ventral, but not dorsal, infusions of AP5 (6 and 24 nmol) before EPM Trial 1 increased open arms exploration and reduced risk assessment behavior, suggesting an anxiolytic-like effect. Furthermore, no interference in the avoidance responses was detected during EPM Trial 2 after AP5 infusion into the ventral or dorsal HPC before Trial 1, post-trial 1, or before Trial 2. These data support the notion of differential involvement of ventral HPC, but not dorsal, in mechanisms associated with anxiety and suggest the participation of the glutamatergic transmission, through NMDA receptor, into the ventral HPC in the mediation of defensive behavior.  相似文献   

8.
Retrograde and anterograde amnesic effects of excitotoxic lesions of the rat retrosplenial cortex (RS) and hippocampus (HPC) were investigated. To test retrograde amnesia, rats were trained with two-arm place discrimination in a radial maze 4 wk and 1 d before surgery with a different arm pair, respectively. In the retention test 1 wk after surgery, both lesion groups showed temporally ungraded retrograde amnesia. To test anterograde amnesia, animals were trained after surgery to discriminate three arm pairs successively within a day, and then after interposition of 1- to 4-wk intervals, one of these pairs, respectively, was tested for retention. RS-lesioned rats could acquire these pairs of place discriminations rapidly but showed a retention interval-dependent impairment in the retention test. Conversely, HPC-lesioned rats took more sessions to acquire these pairs than did the control group, and their retention was approximately 70% of correct performance regardless of retention interval. Results suggest that RS and HPC have different roles in spatial memory and that RS is important for remote memory process.  相似文献   

9.
Several studies have reported that glucocorticoids impair memory retrieval. The present study examined in male Sprague-Dawley rats the effects of systemically administered corticosterone on retrieval of memory for inhibitory avoidance training. Corticosterone (3.0mg/kg, s.c.) injected 30min before retention testing, 48h after training, significantly impaired retention performance, as compared to vehicle treatment, of rats tested in the training context. In contrast, corticosterone administration did not impair retrieval when rats were tested for retention in a different context. Corticosterone did also not impair retention performance of rats given a mild-intensity footshock that resulted in only weak, non-contextual memory. These findings strongly suggest that corticosterone selectively impaired retrieval of contextual information associated with the training context. The centrally acting beta-adrenoceptor antagonist propranolol (2.0mg/kg), co-administered in a dose that did not affect retention performance alone, blocked the impairment in contextual memory retrieval induced by corticosterone. These findings provide evidence for the view that glucocorticoids interact with noradrenergic mechanisms in influencing memory retrieval.  相似文献   

10.
There is strong evidence that reactivation of a memory returns it to a labile state, initiating a restabilization process termed reconsolidation, which allows for updating of the memory. In this study we investigated reactivation-dependent updating using a new positively motivated spatial task in rodents that was designed specifically to model a human list-learning paradigm. On Day 1, rats were trained to run to three feeders (List 1) for rewards. On Day 2, rats were trained to run to three different feeders (List 2) in either the same (Reminder condition) or a different (No Reminder condition) experimental context than on Day 1. On Day 3, rats were cued to recall List 1. Rats in the Reminder condition made significantly more visits to List 2 feeders (intrusions) during List 1 recall than rats in the No Reminder condition, indicating that the reminder triggered reactivation and allowed integration of List 2 items into List 1. This reminder effect was selective for the reactivated List 1 memory, as no intrusions occurred when List 2 was recalled on Day 3. No intrusions occurred when retrieval took place in a different context from the one used at encoding, indicating that the expression of the updated memory is dependent upon the retrieval context. Finally, the level of intrusions was highest when retrieval took place immediately after List 2 learning, and generally declined when retrieval occurred 1-4 h later, indicating that the List 2 memory competed with short-term retrieval of List 1. These results demonstrate the dynamic nature of memory over time and the impact of environmental context at different stages of memory processing.  相似文献   

11.
Newly encoded memory traces are spontaneously reactivated during sleep. Since their discovery in the 1990s, these memory reactivations have been discussed as a potential neural basis for dream experiences. New results from animal and human research, as well as from the rapidly growing field of sleep and dream engineering, provide essential insights into this question, and reveal both strong parallels and disparities between the two phenomena. We suggest that, although memory reactivations may contribute to subjective experiences across different states of consciousness, they are not likely to be the primary neural basis of dreaming. We identify important limitations in current research paradigms and suggest novel strategies to address this question empirically.  相似文献   

12.
Galanin inhibits the release of several neurotransmitters and produces performance deficits in a variety of spatial and aversive learning and memory tasks. The experiments in this study investigated the role galanin has in emotional learning and memory using a standard delay cued and contextual fear conditioning task. Rats were administered galanin into the lateral ventricles before training, and scored for freezing behavior in the same context and in a novel context with and without an auditory cue (CS) that had been paired previously with an aversive stimulus (US). Galanin-overexpressing transgenic mice were tested in an identical behavioral protocol. The galanin-administered rats and the transgenic mice were not significantly different from their respective controls on this task. A more challenging trace cued and contextual fear conditioning procedure was administered to separate groups of galanin-treated rats and galanin-overexpressing transgenic mice. Subjects were trained with the same CS and US, however, a 2.5-sec delay was inserted between CS offset and US onset. Following the trace conditioning, rats administered galanin and mice overexpressing galanin both exhibited significantly less freezing to the CS in the novel context as compared with their control groups. These results indicate that the observed disruption of cued fear conditioning was specific to the more difficult trace conditioning task. These findings are the first demonstration that galanin impairs performance on an emotional memory task and support the hypothesis that galanin-induced deficits are specific to more difficult cognitive tasks.  相似文献   

13.
Freezing (immobility) in the presence of aversive stimuli is a species-specific behavior that is used as an operational measure of fear. Conditioning of this response to discrete sensory stimuli and environmental context cues has been used as a tool to study the neuropsychology of memory dynamics and their development over the lifespan. Three age groups of F344 rats (3, 9, and 27 month) received tone–foot shock pairing (or tone only) in a distinctive chamber on two consecutive days. Separate subgroups of rats from each age group were then tested, at retention intervals of 1, 20, 40, or 60 days, for context-mediated fear in the environment in which they were trained, for generalization of the fear response to a novel chamber, and for fear of the tone. Beginning at day 20, the 27-month-old rats exhibited less freezing behavior than did younger rats when tested in the conditioning context. This age difference was a result of freezing behavior becoming progressively stronger with time in the two younger age groups, a phenomenon that has been referred to as memory incubation. Incubation of the contextual fear response was not detected in the old rats. In a novel context, all age groups exhibited significantly more freezing than did control animals. There was also pronounced incubation of this generalized freezing response, and the extent of incubation declined significantly with age. In the novel context, the freezing response to the tone was robust in all age groups and increased over time, in constant proportion to the degree of freezing elicited by the novel context itself, prior to tone onset. The fact that old animals are known to be relatively selectively impaired in forms of memory that depend on a functional hippocampus suggests a possible explanation for the reduced incubation effects seen in old rats; however, whether the increased expression of fear over time is mediated by a hippocampal-dependent memory consolidation process or whether it reflects a generalized increase in the gain of the circuitry mediating the fear response itself, remains to be determined.  相似文献   

14.
The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) may provide modulatory signals that, respectively, influence hippocampal (HPC)- and striatal-dependent memory. Electrophysiological studies investigating neural correlates of learning and memory of dopamine (DA) neurons during classical conditioning tasks have found DA neural activity in VTA and SNc to be tightly coupled with reinforcement expectations. Also, VTA integrity and DA in HPC have been found to regulate the encoding of HPC-dependent memories. Therefore, to determine the nature of the neural code HPC may receive from midbrain DA regions, the present study investigated VTA and SNc neural activity as navigating rats engaged in new spatial learning and experienced changes in expected goal locations. VTA and SNc cells were differentially engaged during training to a series of three novel goal locations. During task acquisition, the peak firing rates of VTA neurons decreased at the time of reward and shifted to time points before reward retrieval, whereas the peak firing rates of SNc neurons remained elevated at the time of reward during training to all three goal locations. Both VTA and SNc egocentric coding was strongest during training to the first goal location, which coincided with the time subjects learned the behavioral rules specific to the task. These data imply that VTA and SNc play complementary yet distinct roles in spatial learning to optimize adaptive behavior.  相似文献   

15.
The study of memory modulation in infant rats has typically focused on reminder/retrieval treatments involving reexposure to components of the internal or external training context. Rarely have studies employed pharmacological treatments to investigate the neurochemical substrates of memory storage in preweanling rats. The present study investigated the effect of 100 mg/kg of glucose, a common memory modulator in adult mammals, on memory for passive-avoidance conditioning in 18-day-old Sprague-Dawley rats. Subjects that were administered an immediate post-training injection of glucose performed significantly better, on a retention test 24 h following training, than those animals that received saline. The glucose group also performed comparably to a control group that was tested 10 min following training. These results are consistent with those of the memory modulation literature in adults and suggest that the rapid rate of forgetting in immature organisms may be the result of a deficiency in a general memory modulatory system.  相似文献   

16.
Pavlovian trace conditioning critically depends on the medial prefrontal cortex (mPFC) and hippocampus (HPC), whereas delay conditioning does not depend on these brain structures. Given that the cholinergic basal forebrain system modulates activity in both the mPFC and HPC, it was reasoned that the level of acetylcholine (ACh) release in these regions would show distinct profiles during testing in trace and delay conditioning paradigms. To test this assumption, microdialysis probes were implanted unilaterally into the mPFC and HPC of rats that were pre-trained in appetitive trace and delay conditioning paradigms using different conditional stimuli in the two tasks. On the day of microdialysis testing, dialysate samples were collected during a quiet baseline interval before trials were initiated, and again during performance in separate blocks of trace and delay conditioning trials in each animal. ACh levels were quantified using high-performance liquid chromatography and electrochemical detection techniques. Consistent with our hypothesis, results showed that ACh release in the mPFC was greater during trace conditioning than during delay conditioning. The level of ACh released during trace conditioning in the HPC was also greater than the levels observed during delay conditioning. While ACh efflux in both the mPFC and HPC selectively increased during trace conditioning, ACh levels in the mPFC during trace conditioning testing showed the greatest increases observed. These results demonstrate a dissociation in cholinergic activation of the mPFC and HPC during performance in trace but not delay appetitive conditioning, where this cholinergic activity may contribute to attentional mechanisms, adaptive response timing, or memory consolidation necessary for successful trace conditioning.  相似文献   

17.
The rodent hippocampal system is known to play an important role in memory. Evidence that this role is not limited to spatial memory has come from studies using a variety of non-spatial memory tasks. One example is the social transmission of food preference paradigm, a task in which rats learn an odor-odor association with no explicit spatial memory component. However, because training and testing in this task typically take place in the same environment, it is possible that memory for the spatial context in which odors are experienced during training is critical to subsequent retention performance. If this is the case, it might be expected that lesions of the hippocampal system would impair memory performance by disrupting the establishment of a representation of the training environment. We addressed this issue by training rats in one spatial context and then testing them either in the same or a different spatial context. Normal control rats performed equally well when tested in an environment that was the same or different from that used during training, and the retention impairment exhibited by rats with hippocampus plus subiculum lesions was equivalent in the two test environments. These results support the view that the hippocampal system is necessary for the flexible expression of nonspatial memories even when the spatial context in which the memory is acquired is not critical to retrieval.  相似文献   

18.
The present studies examined whether the retrieval of an old ‘reactivated’ memory could be brought under the control of new contextual cues. In Experiment 1 rats trained in one context were exposed to different contextual cues either immediately, 60 or 120 min after a cued reactivation of the training memory. When tested in the shifted context, subjects exposed shortly after reactivation treated the shifted context as the original context. This transfer diminished with longer post-reactivation delays. Experiment 2 replicated the basic finding and demonstrated that the transfer of the old retrieval cues was specific to the contextual cues present during exposure. These findings are consistent with previous research [i.e., Briggs, J. F., Fitz, K. I., & Riccio, D. C. (in press). Transfer of memory retrieval cues in rats. Psychonomic Bulletin & Review] showing the transfer of retrieval cues for a new memory, and demonstrating a similarity (in this case) between newly acquired and old reactivated memories.  相似文献   

19.
Two experiments using rats were conducted to determine whether the retrieval of a memory could be brought under the control of new contextual cues that had not been present at the time of training. In Experiment 1, rats were trained in one context and then exposed to different contextual cues immediately, 60 min, or 120 min after training. When tested in the shifted context, rats that had been exposed shortly after training treated the shifted context as if it were the original context. The control that the previously neutral context had over retrieval disappeared with longer posttraining delays, suggesting the importance of an active memory representation during exposure. Experiment 2 replicated the basic finding and demonstrated that the transfer of retrieval cues was specific to the contextual cues present during exposure. These findings with rats are consistent with findings from infant research (see, e.g., Boller & Rovee-Collier, 1992) that have shown that a neutral context can come to serve as a retrieval cue for an episode experienced elsewhere.  相似文献   

20.
We report that post-training inactivation of basolateral amygdala region (BLA) with muscimol impaired memory for contextual-fear conditioning (as measured by freezing) and intra-BLA norepinephrine enhanced this memory. However, pre-exposure to the context eliminated both of these effects. These findings provide a likely explanation of why an earler study failed to observe that the BLA modulates contextual fear conditioning-they pre-exposed their rats to the context. These results also suggest that the amygdala modulates the storage of the context fear memory and may do so by influencing the storage of the representation of the context in which the shock occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号