首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secondary defects induced by ion and electron irradiation up to 6?dpa (displacements per atom) at liquid-nitrogen temperature in GaSb thin films are compared. For Sn ion (60?keV) irradiation, voids were observed. However, for high-energy electron (2?MeV) irradiation, interstitial-type dislocation loops were produced. The densities of voids and interstitial-type dislocation loops were almost equivalent (8?×?1014?voids/m2 and 3?×?1014?loops/m2) after irradiations at the same damage level of 6?dpa. It is concluded that the formation of voids by ion irradiation follows the creation of localised vacancy defects in cascade damage.  相似文献   

2.
Al–Pb ribbons containing 1?at.%?Pb have been produced by melt-spinning and subsequently investigated by high-resolution transmission electron microscopy. It is shown that the lattice mismatch of about 22% between the nanometre-sized Pb inclusions and the surrounding Al matrix is accommodated by a periodic array of misfit dislocations at the Al–Pb interface. The closing failures of Burgers circuits drawn around misfit dislocations on {111} and {100} facets identify the corresponding Burgers vectors as (a 0/4)? 211 ? and (a 0/2)? 110?, respectively. The Burgers vector of (a 0/4)? 211? corresponds to the projected edge part of a 60° (a 0/2)? 110? dislocation. The Pb inclusions themselves appear to be free of defects.  相似文献   

3.
The Peierls stress of the a/2?110? screw dislocation belonging to the shuffle set is calculated for silicon using density functional theory. We have checked the effect of boundary conditions by using two models, the supercell method where one considers a periodic array of dislocations, and the cluster method where a single dislocation is embedded in a small cluster. The Peierls stress is underestimated with the supercell and overestimated with the cluster. These contributions have been calculated and the Peierls stress is determined in the range between 2.4?×?10?2 and 2.8?×?10?2?eV?Å?3. When moving, the dislocation follows the {111} plane going through a low energy metastable configuration and never follows the 100 plane, which includes a higher energy metastable core configuration.  相似文献   

4.
Two Fe–Cu binary model alloys, Fe–0.3Cu and Fe–0.6Cu, were irradiated with fission neutrons at doses ranging from 4?×?10?6 to 0.16 dpa (displacements per atom) at ~573 K to investigate the formation of Cu precipitates and microstructural evolution. The Cu content only affected the formation of Cu precipitates and microvoids at low doses. In Fe–0.3Cu, the formation of microvoids and Cu precipitates initiated at doses of 1.2?×?10?4 and 4?×?10?5 dpa, respectively. On the other hand, the formation of microvoids started at a dose of 4?×?10?4 dpa in Fe–0.6Cu, and Cu precipitates were formed even after irradiation to 4?×?10?6 dpa. On further irradiation, the difference in the formation of Cu precipitates and microvoids was small. Microvoids grew with increasing irradiation dose up to 3?×?10?3 dpa in both alloys. Prominent aggregation of Cu atoms occurred upon irradiation from 3?×?10?3 to 1.6?×?10?2 dpa and the microvoids shrank. The Cu precipitates no longer grew, and microvoids nucleated and grew in the matrix above a dose of 1.6?×?10?2 dpa in both alloys. The present studies clearly reveal the relationships between the formation and growth of Cu precipitates and microvoids with irradiation dose.  相似文献   

5.
ABSTRACT

A multiscale crystallographic texture architecture in a surface gradient nanostructured Al-Cu-Mg alloy after surface sliding friction treatment (SSFT) has been revealed by a combination of electron backscatter diffraction and precession electron diffraction (PED)-assisted transmission electron microscopy (TEM) orientation mapping. Accompanying a grain structure variation from lamellar coarse grains to equiaxed nanograins, the major texture components evolve from brass {110}<112> in the coarse-grain matrix, Goss {110}<001> at a depth of ~80?μm, E {111}<011> and F {111}<112> at a depth of ~20?μm, to a mixture of rotated cube {001}<110>, E and F in the topmost surface layer. The through-thickness textural development and evolution are attributed to the cyclic loading of concurrent shear and compression during the SSFT processing. The PED-assisted orientation mapping shows good capability in mapping severe plastic-deformation-induced nanostructures with large residual strains and high defect density.  相似文献   

6.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy. Localized diffusible hydrogen in martensite causes cracking through two mechanisms: (1) interaction between {1?1?0}M localized slip and {1?1?2}M twin and (2) cracking of martensite–martensite grain interfaces. The former resulted in nanovoids along the {1?1?2}M twin. The coalescence of the nanovoids generated plate-like microvoids. The latter caused shear localization on the specific plane where the crack along the martensite/martensite boundary exists, which led to additional martensite/martensite boundary cracking.  相似文献   

7.
Abstract

When spinel is deformed in compression at 400°C along 〈110〉, the primary slip plane is found to be {111} with cross-slip occurring on a {001} plane. A comparison of weak-beam images of dislocations from both systems indicates that all dislocations which belong to the primary slip plane are dissociated out of the {111} plane independent of the character of the dislocation. It is proposed that deformation occurs by motion of dislocations in their dissociated state and that the partial dislocations actually glide on parallel glide planes. Movement of these dissociated dislocations is then accompanied by a concurrent migration of the stacking fault which takes place by a local shuffling of the cations. A stacking fault energy for conservative dissociation at 400°C on {001} of 530±90mJ m?2 has been determined from weak-beam images of screw dislocations.  相似文献   

8.
Metallic glass has been formed in Au50Ta50 multilayer films upon 200?keV xenon ion mixing at an irradiation dose of 1?×?1015?Xe+/cm2. Electron diffraction and high-resolution transmission electron microscopy analysis confirm that the metallic glass consists of two amorphous phases, evolved from Au and Ta lattices, respectively, and also reveal the formation of a fractal morphology with a fractal dimension of 1.73?±?0.05 in the dual-phase glass features. In similar Au65Ta35 multilayer films, a fractal pattern is also observed at a dose of 1?×?1015?Xe+/cm2, while the pattern, with a fractal dimension of 1.74?±?0.05, is composed in this case of a crystalline Au-based solid solution and a Ta-based amorphous phase. Interestingly, the fractal dimensions of the two irradiation-induced fractal patterns match quite well with that expected on a cluster diffusion-limited aggregation model.  相似文献   

9.

Dislocations have been introduced in SrTiO3 by Vickers indentation at room temperature and analysed by transmission electron microscopy. The slip systems in SrTiO3 were identified as ?110?-{110}. ?110? dislocations are dissociated into two partial dislocations. The stacking-fault energy γSF was determined to be 136 ± 15 mJm-2.  相似文献   

10.
The atomic structure of {1?1?2} twin boundary in a specialty β-Ti alloy, gum metal, has been studied by means of conventional transmission electron microscopy, bright-field and high-angle annular dark field scanning transmission electron microscopy imaging. The observations provide direct evidence that the {1?1?2} twin boundary has a complex, multiple-layer structure, which is composed of various structural units. These structural units are formed as a result of different degrees of inner atomic-column shifting. The complex structure of the {1?1?2} twin boundary is different to the atomic structure of the previously reported ω phase.  相似文献   

11.
Abstract

Two unexpected features have been revealed by transmission electron microscopy investigations of deformed silicon bicrystals: (a) slip of a/2 〈110〉 dislocations on {001} planes and (b) non-dissociation of Lomer–Cottrell dislocations formed by intersecting slip dislocations.  相似文献   

12.

High-resolution in situ heating experiments in a transmission electron microscope have been applied to a study of the surface modification of Si by molten Al in a vacuum of 1 10-5 Pa. Transformation from an atomically rough to an atomically flat surface was induced by wetting of molten Al atoms. Si {110}, {112}, {115} and {773} surfaces show sawtooth-like structures composed of nanofacets. It is concluded that molten Al atoms remove a native amorphous oxide layer which existed on the original Si surface, making the surface 'clean' even in a non-ultra-high vacuum such as 10-5Pa.  相似文献   

13.
The effect of magnetic crystallization on texture evolution and control in nanocrystalline materials has been studied using a melt-spun amorphous Fe78Si9B13 alloy. The magnetic crystallization was conducted at temperatures ranging from 653 to 853?K in a magnetic field up to 6?T. The temperatures used for magnetic crystallization were chosen on the basis of the Curie and crystallization temperatures of the amorphous phase, and the Curie temperature of the crystallized phase. The resultant microstructure was characterized by X-ray diffraction and FE-SEM/EBSP/OIM techniques. It was found that a sharp {110} texture developed when the amorphous precursor was crystallized at 853?K in a magnetic field of 6?T applied in a direction parallel to the ribbon surface.  相似文献   

14.
It is interesting to investigate the formation of He bubbles in amorphous alloys because point defects do not exist in amorphous materials. In the present study, the microstructural evolution of amorphous Fe79B16Si5 alloy, either irradiated with 5?keV He+ ions or implanted with 150?eV He+ ions without causing displacement damage, and then annealed at a high temperature, was investigated using transmission electron microscopy (TEM). Vacancy-type defects were formed in the amorphous alloy after irradiation with 5?keV He+ ions, and He bubbles formed during annealing the irradiated samples at high temperature. On the other hand, for samples implanted with 150?eV He+ ions, although He atoms are also trapped in the free volume, no He bubbles were observed during annealing the samples even up to 873?K. In conclusion, the formation of He bubbles is related to the formation and migration of vacancy-type defects even in amorphous alloys.  相似文献   

15.

The microstructure of long-period TiAl 2 deformed at room temperature has been studied by means of transmission electron microscopy. Dislocations, stacking faults and twins were found to contribute to the deformation. A screw superdislocation with Burgers vector d 110] dissociates into two ½ d 110] super-partial dislocations associated with an antiphase boundary. The ½; d 110] super-partial dislocation further dissociates into two Shockley partial dislocations associated with a portion of complex intrinsic stacking fault on the closest-packed {111} plane. The propagation of stacking faults on successive {111} planes yields an order twin.  相似文献   

16.
An n-type amorphous chalcogenide, In49S51, having a band gap of 1.9eV, has been found. The conductivity in as-prepared films was ~10?4?S?cm?1, which increased to 1?×?10?1?S?cm?1 on post-annealing at 125°C in vacuum, accompanied by a reduction in the sulphur content of the films. TEM observations showed the amorphous nature of the films before and after annealing. Both Seebeck and Hall coefficients are negative, indicating that the major carriers are electrons. The Hall mobility can be as large as 26?cm2?V?1?s?1 at 300?K. No significant changes to the optical absorption were observed upon annealing. Analysis of the X-ray radial distribution function reveals that the sulphur atoms have four-fold coordination, making the structure more rigid than conventional amorphous chalcogenides in which the chalcogen is alloyed to elements of group IV or V of the periodic table. We tentatively associate the electron carrier generation with the formation of sulphur vacancies.  相似文献   

17.
18.
We report the twin-coupled multi-oriented domain structures in the epitaxial BZT20 (20%Zr) films grown on the (001) MgO substrate using pulsed-laser deposition. Transmission electron microscopy shows that the film consists of an epitaxial layer of pseudo-cubic perovskite structure and a nanopillar layer of multi-oriented twin domain structures near the surface. Four types of the twin domains were formed in the nanopillar layers by coherently joining their {111} with the epilayer and aligning their ?110? directions parallel to the ?110? axes of the epilayer. A non-uniform polarization switching behavior was observed due to the formation of such complex structure in the BZT20 films.  相似文献   

19.
Tungsten (W) is cited as a candidate first-wall material in fusion reactors owing to its outstanding thermal properties and erosion resistance. An important issue is that the energetic isotopes of hydrogen, tritium (T) and deuterium (D) and helium (He) particles damage the surface of W in fusion reactors. He particles cause more notable damage than D or T because the binding energy of defects and He is larger than that of defects and D or T. In this study, well-annealed W specimens were implanted with 5 keV He ions at room temperature and irradiation dosages of 1.0 × 1020 and 2.5 × 1021 ions/m2. Then, thermal desorption spectroscopy analysis was performed by heating the samples to 1973 K at a ramping rate of 0.5 K/s. Thermal desorption of He in the sample irradiated with a low dosage occurred at 1400 and 1960 K, whereas that in the sample irradiated with a high dosage occurred at 740, 1050 and 1500 K. According to the microstructures observed using transmission electron microscopy, both peaks in the former case were attributed to He de-trapping from irradiation to nduced helium-vacancy clusters of different sizes, whereas the peaks in the latter case were attributed to He de-trapping from surface defects, irradiation-induced dislocation loops and tiny helium-vacancy clusters, respectively.  相似文献   

20.
In linear multiple regression, “enhancement” is said to occur when R 2=br>rr, where b is a p×1 vector of standardized regression coefficients and r is a p×1 vector of correlations between a criterion y and a set of standardized regressors, x. When p=1 then br and enhancement cannot occur. When p=2, for all full-rank R xxI, R xx=E[xx′]=V Λ V′ (where V Λ V′ denotes the eigen decomposition of R xx; λ 1>λ 2), the set B1:={bi:R2=biri=riri;0 < R2 £ 1}\boldsymbol{B}_{1}:=\{\boldsymbol{b}_{i}:R^{2}=\boldsymbol{b}_{i}'\boldsymbol{r}_{i}=\boldsymbol{r}_{i}'\boldsymbol{r}_{i};0R2 £ 1;R2lpriri < R2}0p≥3 (and λ 1>λ 2>⋯>λ p ), both sets contain an uncountably infinite number of vectors. Geometrical arguments demonstrate that B 1 occurs at the intersection of two hyper-ellipsoids in ℝ p . Equations are provided for populating the sets B 1 and B 2 and for demonstrating that maximum enhancement occurs when b is collinear with the eigenvector that is associated with λ p (the smallest eigenvalue of the predictor correlation matrix). These equations are used to illustrate the logic and the underlying geometry of enhancement in population, multiple-regression models. R code for simulating population regression models that exhibit enhancement of any degree and any number of predictors is included in Appendices A and B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号