首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
In this study, we report on the influence of high pressure on the microstructure evolution of cryomilled nanostructured Al alloy powders during spark plasma sintering (SPS). Our experimental results suggest that the particular mechanism that governs grain growth during SPS depends on the magnitude of the applied pressure. In the case of material consolidated at a high pressure (e.g. 500 MPa), grain coarsening occurs via a combination of thermally activated grain boundary (GB) migration, stress-coupled GB migration and grain rotation-induced grain coalescence. In contrast, in the case of the material consolidated at a low pressure (50 MPa), grain growth occurs primarily via thermally activated GB migration.  相似文献   

2.
We subjected samples of a 304 metastable austenitic stainless steel to high-pressure torsion (HPT) in the temperature range of 303–573 K, (i.e. at different austenite stabilities), to examine their microstructures and mechanical properties. HPT processing at room temperature led to the formation of a lamellar microstructure with austenitic and martensitic phases, of which sizes were characterised by prior austenite grains, whereas HPT processing at moderate temperatures produced nanostructured austenite grains through mechanical twinning. The nanostructured 304 steel with an average grain size of ~70 nm exhibited a fine balance between tensile strength (~1.7 GPa) and reduction of area (~55%).  相似文献   

3.
Germanium has been processed by high-pressure torsion (HPT) under a nominal pressure of 24 GPa at room temperature and cryogenic temperature. The samples processed at room temperature were composed of a diamond-cubic Ge-I phase and a metastable tetragonal Ge-III phase. The formation of Ge-III was significantly suppressed and Ge-I and an amorphous phase, in addition to a small amount of body-centred-cubic Ge-IV, appeared in the case of cryogenic HPT processing at 100 K. The Ge-IV phase gradually disappeared at room temperature. These results indicated that shear strain and thermal energy are important for promoting the formation of Ge-III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号