首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molybdenum bismuth telluride thin films have been prepared on clean glass substrate using arrested precipitation technique which is based on self-organized growth process. As deposited MoBi2Te5 thin films were dried in constant temperature oven at 110°C and further characterized for their optical, structural, morphological, compositional, and electrical analysis. Optical absorption spectra recorded in the wavelength range 300–800?nm showed band gap (E g) 1.44?eV. X-ray diffraction pattern and scanning electron microscopic images showed that MoBi2Te5 thin films are granular, nanocrystalline having rhombohedral structure. The compositional analysis showed close agreements in theoretical and experimental atomic percentages of Mo4+, Bi3+, and Te2? suggest that chemical formula MoBi2Te5 assigned to as deposited molybdenum bismuth telluride new material is confirmed. The electrical conductivity and thermoelectric power measurement showed that the films are semiconducting with n-type conduction. The fill factor and conversion efficiency was characterized by photoelectrochemical (PEC) technique. In this article, we report the optostructural, morphological, compositional, and electrical characteristics of nanocrystalline MoBi2Te5 thin films to check its suitability as photoelectrode in PEC cell.  相似文献   

2.
An n-type amorphous chalcogenide, In49S51, having a band gap of 1.9eV, has been found. The conductivity in as-prepared films was ~10?4?S?cm?1, which increased to 1?×?10?1?S?cm?1 on post-annealing at 125°C in vacuum, accompanied by a reduction in the sulphur content of the films. TEM observations showed the amorphous nature of the films before and after annealing. Both Seebeck and Hall coefficients are negative, indicating that the major carriers are electrons. The Hall mobility can be as large as 26?cm2?V?1?s?1 at 300?K. No significant changes to the optical absorption were observed upon annealing. Analysis of the X-ray radial distribution function reveals that the sulphur atoms have four-fold coordination, making the structure more rigid than conventional amorphous chalcogenides in which the chalcogen is alloyed to elements of group IV or V of the periodic table. We tentatively associate the electron carrier generation with the formation of sulphur vacancies.  相似文献   

3.
Vanadium oxide films, deposited on aluminium (Al), titanium (Ti) and tantalum (Ta) metal substrates by pulsed RF magnetron sputtering at a working pressure of 1.5 x10?2 mbar at room temperature are found to display mixed crystalline vanadium oxide phases viz., VO2, V2O3, V2O5. The films have been characterized by field-emission scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy, and their thermo-optical and electrical properties have been investigated. Studies of the deposited films by DSC have revealed a reversible-phase transition found in the temperature range of 45–49 °C.  相似文献   

4.
The pressure dependence of the electrical resistivity of three different samples of cassiterite, namely natural cassiterite SnO2, synthetic nanocrystalline SnO2 (with crystallite size 46?nm) and nanocrystalline Co-doped SnO2 (with crystallite size 32?nm), has been measured up to 7?GPa at room temperature. The resistivity of natural cassiterite SnO2 decreases from 2.5?×?104?Ωm at normal pressure and temperature to 1.7?×?104?Ωm at 7.0?GPa. The nanocrystalline SnO2 has a high resistivity 6.0?×?105?Ωm at normal pressure and temperature and decreases with pressure reaching a value of 2.98?×?105?Ωm at 7?GPa. The activation energy of the electrical conduction of the studied samples were found to be 0.32?eV for the natural SnO2, 0.40?eV for the nanocrystalline SnO2 sample and 0.28?eV for the nanocrystalline Co-doped SnO2. Measurements of the pressure dependence of the electrical resistivity of the Co-doped SnO2 showed a decrease from 3.60?×?105 to 5.4?×?104?Ωm at 7.0?GPa. We did not observe any pressure-induced phase transition in SnO2 up to 7?GPa. This study of the high-pressure phase stability of cassiterite corroborates the experimental findings of SnO2 nanoinclusions in diamonds.  相似文献   

5.
We report on the effect of cooling rate on the size-dependent atomic ordering of CoPt nanoparticles using aberration corrected high-resolution transmission electron microscopy. It was found that cooling rate plays a crucial role in promoting atomic ordering during the cooling process after annealing. Nanoparticles of ≈3?nm in diameter show the A1-disordered phase after annealing at 873?K for 1?h followed by rapid cooling (110?K/min), while the L10-ordered phase is obtained when the cooling rate is slow (1.5?K/min). The disordered phase is also obtained by rapid cooling after annealing at 973?K for 1?h. These results unambiguously indicate that the order–disorder transformation temperature is reduced to a temperature at least lower than 873?K for CoPt nanoparticles smaller than 3?nm in diameter. The slow cooling process promotes the atomic ordering, which resulted in an enhancement of magnetic coercivity as high as 2200?Oe. This study demonstrates that hard magnetic properties of the CoPt nanoparticles can be improved by controlling the cooling rate after heat treatments.  相似文献   

6.
Thin films of Ga x Te100? x (x?=?3, 6, 9 and 12) have been synthesized by thermal evaporation. From SEM images, it is observed that all the films contain nanoparticles of sizes varying from 100 to 200?nm. The dc electrical conductivity of the as-deposited films of Ga x Te100?x nanoparticles is measured as a function of temperature range from 298 to 383?K, and increases exponentially with temperature. The value of the activation energy, calculated from the slope of ln?σ dc versus 1000/T plots, is found to decrease with increase in the Ga content. On the basis of the value of the pre-exponential factor σ o, it is suggested that the conduction is due to thermally assisted tunneling of carriers in localized states near the band edges. The optical measurements suggest an indirect optical band gap in this system. The value of the optical band gap decreases on increasing the Ga concentration.  相似文献   

7.
A spectroscopic characterization of Er3+-doped SrAl2O4 phosphor materials synthesized by a solid-state reaction method with Er concentrations varying from 0.1 to 1?mol% has been performed by studying photoluminescence (PL) in the temperature range 10 to 360?K and absorption spectra. PL signals containing five emission bands at 1492, 1529, 1541, 1558, and 1600?nm, respectively, have been observed at room temperature for Er3+ transitions in the near infrared region. The samples exhibit a main luminescence peak at 1.54?µm, which is assigned to recombination via an intra-4f Er3+ transition. Sharp bands centered at around 378, 488, 521, 651, 980, 1492, and 1538?nm in the absorption spectra can be associated with transitions from 4I15/2 level to 2H9/2, 4F7/2, 2H11/2, 4F9/2, 4I11/2, 2H11/2, and 4I13/2 levels, respectively. The sharp emission peaks and excellent luminescence properties show that SrAl2O4 is a suitable host for rare-earth-doped phosphors, which may be suitable for optical applications.  相似文献   

8.
It is interesting to investigate the formation of He bubbles in amorphous alloys because point defects do not exist in amorphous materials. In the present study, the microstructural evolution of amorphous Fe79B16Si5 alloy, either irradiated with 5?keV He+ ions or implanted with 150?eV He+ ions without causing displacement damage, and then annealed at a high temperature, was investigated using transmission electron microscopy (TEM). Vacancy-type defects were formed in the amorphous alloy after irradiation with 5?keV He+ ions, and He bubbles formed during annealing the irradiated samples at high temperature. On the other hand, for samples implanted with 150?eV He+ ions, although He atoms are also trapped in the free volume, no He bubbles were observed during annealing the samples even up to 873?K. In conclusion, the formation of He bubbles is related to the formation and migration of vacancy-type defects even in amorphous alloys.  相似文献   

9.
In this study, (Gd1? x Nd x )2(Zr1? x Ce x )2O7 (0 ≤ x ≤ 0.5) ceramics have been prepared by pressureless sintering at 1973 K to investigate the influence of Nd and Ce co-doping on their electrical conductivity. The electrical conductivity of the ceramics was investigated by impedance spectroscopy measurements from 723 to 1173 K over the frequency range of 20 Hz to 2 MHz in air. The measured values obey the Arrhenius relation. For each composition, the grain conductivity gradually increases with increasing temperature from 723 to 1173 K. At a given temperature, it gradually decreases with increasing neodymium and cerium contents from x = 0 to 0.3; thereafter, the grain conductivity exhibits a slight increase with further increasing neodymium and cerium contents up to x = 0.5.  相似文献   

10.
PbZr0.95Ti0.05O3 thin film has the highest electrocaloric properties of all the oxide thin films (0.48?K?V?1). Here, it is shown giant electrocaloric properties in 200?nm (1?0?0)-oriented PMN–PT 68/32 film near the ferroelectric Curie temperature of 146?°C. The results indicate the significance of this system to achieve electrocaloric entropy change and temperature change, up to 32.21?J/kg?°C and 14?K, respectively, in 12?V (i.e. 1.155?K?V?1) near the Curie point. This exceeds the previous best results obtained in PbZr0.95Ti0.05O3 thin film.  相似文献   

11.
Antimony-doped tin oxide (ATO) films, approximately 320 nm in thickness, have been prepared by electron beam evaporation onto glass substrates. The films were annealed at temperatures between 400°C and 550°C in air and their structure and surface morphologies were observed by X-ray diffraction (XRD) and atomic force microscopy (AFM) after the different annealing treatments. XRD patterns of the ATO thin films as-deposited and annealed at 400°C showed that they were amorphous, but annealing beyond 400°C caused the films to become polycrystalline with tetragonal structure and orientated in the (1 1 0) direction. The grain size in the annealed films, obtained from the XRD analysis, was in the range 146–256 Å and this increased with the annealing temperature. The dislocation density, cell volume and strain were found to decrease gradually with increasing annealing temperature. Photoluminescence spectra revealed an intensive blue/violet peak at 420 nm, which increased gradually in height with annealing. It is suggested that an increase in the population of Sb+5 ions might be the reason for the enhancement of the blue/violet emission. The optical properties of the films were also investigated in the UV-visible-NIR region (300–1000 nm). The optical constants, namely the refractive index n and the extinction coefficient k in the visible region were calculated. The optical energy band gap, as determined by the dependence of the absorption coefficient on the photon energy at short wavelengths, was found to increase from 3.59 to 3.76 eV with annealing temperature.  相似文献   

12.
Thin films of cubic boron nitride were deposited on silica and Si substrates by inductively coupled radio-frequency plasma chemical vapour deposition (IPCVD) technique using a B2H6?+?N2?+?Ar gas mixture. Cubic phase formation was confirmed by glancing-angle X-ray diffraction studies, which showed reflections up to (311). Fourier-transform infrared (FTIR) spectra also indicated the predominantly cubic nature of the deposited films. The optical properties of the films were studied in the wavelength range 200–1000?nm. Both direct and indirect transitions were found to be present. Mechanical stress in the grain-boundary region of the films seems to contribute significantly to the optical absorption below the band gap. The intercrystalline barrier height (E b) and the trap state density (Q t ) were obtained from an analysis of the effects of grain boundaries on the optical properties of the samples.  相似文献   

13.

High-temperature annealing in air of thick crystalline silver films deposited on high-purity nickel foils promotes solid-state dewetting, whereas no hole through the film is produced when annealing under high purity argon. Scanning electron microscopy observations of the film surface and of cross-sections reveal that dewetting occurs only if a nickel oxide layer forms at the silver-nickel interface, as a result of oxygen diffusion through the silver film. The main dewetting mechanism over short times (1h 1120K in air) is observed to be the condensation, at the silver-nickel oxide interface, of vacancies into voids which grow towards the free surface of the silver film.  相似文献   

14.
The surface tensions of liquid ternary Ni–5%Cu–5%Fe, quaternary Ni–5%Cu–5%Fe–5%Sn and quinary Ni–5%Cu–5%Fe–5%Sn–5%Ge alloys were determined as a function of temperature by the electromagnetic levitation oscillating drop method. The maximum undercoolings obtained in the experiments are 272 (0.15T L), 349 (0.21T L) and 363?K (0.22T L), respectively. For all the three alloys, the surface tension decreases linearly with the rise of temperature. The surface tension values are 1.799, 1.546 and 1.357?N/m at their liquidus temperatures of 1719, 1644 and 1641?K. Their temperature coefficients are ?4.972?×?10–4, ?5.057?×?10?4 and ?5.385?×?10?4?N/m/K. It is revealed that Sn and Ge are much more efficient than Cu and Fe in reducing the surface tension of Ni-based alloys. The addition of Sn can significantly enlarge the maximum undercooling at the same experimental condition. The viscosity of the three undercooled liquid alloys was also derived from the surface tension data.  相似文献   

15.
The thermophysical properties of undercooled liquid alloys at high temperature are usually difficult to measure by experiment. Here, we report the specific heat of liquid Ti45Al45Nb10 ternary alloy in the undercooled state. By using electromagnetic levitation technique, a maximum undercooling of 287?K (0.15 T L) is achieved for this alloy. Its specific heat is determined to be 32.72?±?2.51?J?mol?1 K?1 over a broad temperature range of 1578–2010?K.  相似文献   

16.

The puzzling existence of a sharp low-temperature (T = 400°C) H evolution peak in compact hydrogenated amorphous silicon (a-Si : H) films deposited 'on the edge of crystallinity' is examined. From infrared absorption and X-ray diffraction (XRD) measurements, we show that none of the standard methods used to explain the existence of this peak in a-Si : H materials is applicable to the present films. From the Si-H wag-mode peak frequency, we postulate the existence of very small Si crystallites contained within the amorphous matrix. While the crystallite volume fraction is too small to be detected by XRD in the as-grown films, crystallization is observed for this material at anneal temperatures as low as 500°C. It is proposed that these crystallites catalyse the crystallization of the remainder of the amorphous matrix upon moderate annealing, enabling H surface desorption and H2 out-diffusion to the sample surface along newly formed grain boundaries at low anneal temperatures.  相似文献   

17.
The change of the specific surface area in porous Ni59Zr20Ti16Si2Sn3 metallic glass (MG) upon partial crystallization was investigated. The observed increase in the surface area of the annealed Ni-based MG foams is due to the formation of homogeneously distributed Ni10(Zr,Ti)7 rod-shape intermetallic phases with nominal diameters around 250?nm and ~800?nm length on the surface of MG struts during the crystallization. For longer annealing, the specific surface area decreases again due to a change of the morphology of the crystals from rod-like to disc-like appearance, thus suggesting an optimum regime for increasing the specific surface area upon isothermal annealing at a given temperature.  相似文献   

18.
It is usually difficult to undercool Ti–Al alloys on account of their high reactivity in the liquid state. This results in a serious scarcity of information on their thermophysical properties in the metastable state. Here, we report on the surface tension of a liquid Ti–Al alloy under high undercooling condition. By using the electromagnetic levitation technique, a maximum undercooling of 324 K (0.19 T L) was achieved for liquid Ti-51 at.% Al alloy. The surface tension of this alloy, which was determined over a broad temperature range 1429–2040 K, increases linearly with the enhancement of undercooling. The experimental value of the surface tension at the liquidus temperature of 1753 K is 1.094 N m?1 and its temperature coefficient is ?1.422 × 10?4 N m?1 K?1. The viscosity, solute diffusion coefficient and Marangoni number of this liquid Ti–Al alloy are also derived from the measured surface tension.  相似文献   

19.
The microstructures of 304 stainless steels with different amounts of nanocrystalline and microcrystalline austenite prepared by an aluminothermic reaction casting, without and with annealing at 1073?K for 8?h, have been investigated by X-ray diffraction, an electron probe micro-analyser, a transmission electron microscope and a scanning electron microscope. The steels, both without and with annealing, consisted of different dual nanocrystalline and microcrystalline austenite combinations and a little nanocrystalline δ ferrite, while the average grain size of the nanocrystalline austenite increased from 19 to 26?nm and volume fraction of the microcrystalline austenite increased from 17 to 30% after annealing. The tensile strength of the steel was dramatically increased from 500 to 1000?MPa and the tensile elongation ratio increased from 8 to 12% after annealing. However, the tensile strength was decreased to 600?MPa and the tensile elongation ratio increased from 12 to 22% after an annealing at 1273?K. The combination of dual nanocrystalline and microcrystalline austenite obtained after the annealing at 1073?K results in the best tensile properties.  相似文献   

20.
The spatial distribution of europium-dihalide-type precipitates in KCl?:?KBr?:Eu2+ single crystals annealed at 200°C for long periods of time was determined by epifluorescence optical microscopy. Laue-type patterns and optical spectroscopy were used to test the degree of long-range ordering of the specimens and to monitor the precipitation during annealing, respectively. Precipitates smaller than about 0.08?µm were found (2.84?×?1012 precipitates cm?3) all across the host, whereas larger precipitates of about 0.17?µm were found (2.9?×?104 precipitates cm?1) along certain linear structural singularities of the matrix. These singularities, identified as crystal dislocations, were observed to terminate always either at a triple node of singularities or at the crystal surface, forming a three-dimensional network of crystal singularities (2.0?×?106 singularities cm?2), identified as the Frank network. The presence of europium exhaustive matrix zones accompanying the observed europium-decorated paths indicates that impurity segregation processes, occurring during annealing, favour the precipitation phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号