首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apparent velocity of motion aftereffects in central and peripheral vision   总被引:2,自引:0,他引:2  
M J Wright 《Perception》1986,15(5):603-612
Adapting to a drifting grating (temporal frequency 4 Hz, contrast 0.4) in the periphery gave rise to a motion aftereffect (MAE) when the grating was stopped. A standard unadapted foveal grating was matched to the apparent velocity of the MAE, and the matching velocity was approximately constant regardless of the visual field position and spatial frequency of the adapting grating. On the other hand, when the MAE was measured by nulling with real motion of the test grating, nulling velocity was found to increase with eccentricity. The nulling velocity was constant when scaled to compensate for changes in the spatial 'grain' of the visual field. Thus apparent velocity of MAE is constant across the visual field, but requires a greater velocity of real motion to cancel it in the periphery. This confirms that the mechanism underlying MAE is spatially-scaled with eccentricity, but temporally homogeneous. A further indication of temporal homogeneity is that when MAE is tracked, by matching or by nulling, the time course of temporal decay of the aftereffect is similar for central and for peripheral stimuli.  相似文献   

2.
When, after prolonged viewing of a moving stimulus, a stationary (test) pattern is presented to an observer, this results in an illusory movement in the direction opposite to the adapting motion. Typically, this motion aftereffect (MAE) does not occur after adaptation to a second-order motion stimulus (i.e. an equiluminous stimulus where the movement is defined by a contrast or texture border, not by a luminance border). However, a MAE of second-order motion is perceived when, instead of a static test pattern, a dynamic test pattern is used. Here, we investigate whether a second-order motion stimulus does affect the MAE on a static test pattern (sMAE), when second-order motion is presented in combination with first-order motion during adaptation. The results show that this is indeed the case. Although the second-order motion stimulus is too weak to produce a convincing sMAE on its own, its influence on the sMAE is of equal strength to that of the first-order motion component, when they are adapted to simultaneously. The results suggest that the perceptual appearance of the sMAE originates from the site where first-order and second-order motion are integrated.  相似文献   

3.
A visual illusion known as the motion aftereffect is considered to be the perceptual manifestation of motion sensors that are recovering from adaptation. This aftereffect can be obtained for a specific range of adaptation speeds with its magnitude generally peaking for speeds around 3 deg s-1. The classic motion aftereffect is usually measured with a static test pattern. Here, we measured the magnitude of the motion aftereffect for a large range of velocities covering also higher speeds, using both static and dynamic test patterns. The results suggest that at least two (sub)populations of motion-sensitive neurons underlie these motion aftereffects. One population shows itself under static test conditions and is dominant for low adaptation speeds, and the other is prevalent under dynamic test conditions after adaptation to high speeds. The dynamic motion aftereffect can be perceived for adaptation speeds up to three times as fast as the static motion aftereffect. We tested predictions that follow from the hypothesised division in neuronal substrates. We found that for exactly the same adaptation conditions (oppositely directed transparent motion with different speeds), the aftereffect direction differs by 180 degrees depending on the test pattern. The motion aftereffect is opposite to the pattern moving at low speed when the test pattern is static, and opposite to the high-speed pattern for a dynamic test pattern. The determining factor is the combination of adaptation speed and type of test pattern.  相似文献   

4.
Grove PM  Ashida H  Kaneko H  Ono H 《Perception》2008,37(8):1152-1159
In previous psychophysical investigations it has been reported that the angular extent over which the human visual field is served by binocular neurons in the visual cortex is limited to the central 40 degrees. However, these reports have been primarily based on data collected with static stimuli. Here we extend this investigation to include dynamic stimuli. Interocular transfer of the rotary motion aftereffect (rMAE) was measured for three stimulus diameters: 5, 30, and 62 deg. Interocular transfer, expressed as a percentage of monocular adapt/test rMAE duration was significantly reduced for stimulus diameter of 62 deg relative to 30 and 5 deg diameters. Nevertheless, interocular transfer durations still comprised a significant percentage of same-eye adapt/test durations (46.9%), comparable to previous reports of transfer MAE durations in near-central vision. The spatial extent of binocular interaction is likely stimulus specific and is still appreciable in the far periphery for complex-motion stimuli.  相似文献   

5.
The surface structure of the waterfall illusion or motion aftereffect (MAE) is its phenomenal visibility. Its deep structure will be examined in the context of a model of space and motion perception. The MAE can be observed following protracted observation of a pattern that is translating, rotating, or expanding/contracting, a static pattern appears to move in the opposite direction. The phenomenon has long been known, and it continues to present novel properties. One of the novel features of MAEs is that they can provide an ideal visual assay for distinguishing local from global processes. Motion during adaptation can be induced in a static central grating by moving surround gratings; the MAE is observed in the static central grating but not in static surrounds. The adaptation phase is local and the test phase is global. That is, localised adaptation can be expressed in different ways depending on the structure of the test display. These aspects of MAEs can be exploited to determine a variety of local/global interactions. Six experiments on MAEs are reported. The results indicated that relational motion is required to induce an MAE; the region adapted extends beyond that stimulated; storage can be complete when the MAE is not seen during the storage period; interocular transfer (IOT) is around 30% of monocular MAEs with phase alternation; large field spiral patterns yield MAEs with characteristic monocular and binocular interactions.  相似文献   

6.
The effects of luminance contrast and spatial frequency on the motion aftereffect were investigated. The point of subjective equality for velocity was measured as an index of the motion aftereffect. The largest effect was observed when a low contrast grating (5%) was presented as a test stimulus after adaptation to a high contrast grating (100%) in the low spatial frequency condition (0.8 cycle deg.-1). On the whole, the effect increased with increasing adapting contrast and with decreasing test contrast or spatial frequency. Small effects were observed at high test contrasts. These results were inconsistent with those of Keck, Palella, and Pantle in 1976. Analysis showed that there was no saturation on velocity of the motion aftereffect above 5% of the contrast although Keck, et al. (1976) found that the incremental increases of the effect above 3% adapting contrast were small.  相似文献   

7.
The authors examined center-surround effects for motion perception in human observers. The magnitude of the motion aftereffect (MAE) elicited by a drifting grating was measured with a nulling task and with a threshold elevation procedure. A surround grating of the same spatial frequency, temporal frequency, and orientation significantly reduced the magnitude of the MAE elicited by adaptation to the center grating. This effect was bandpass tuned for spatial frequency, orientation, and temporal frequency. Plaid surrounds but not contrast-modulated surrounds that moved in the same direction also reduced the MAE. These results provide psychophysical evidence for center-surround interactions analogous to those previously observed in electrophysiological studies of motion processing in primates. Collectively, these results suggest that motion processing, similar to texture processing, is organized for the purpose of highlighting regions of directional discontinuity in retinal images.  相似文献   

8.
Q Zaidi  W L Sachtler 《Perception》1991,20(6):703-714
When a narrow uniform gap was surrounded by a moving grating, the gap appeared as a grating in the opposite phase to that of the surround, moving in the same direction with the same speed. Contrast thresholds for moving test-gratings placed in the region of the uniform gap were found to be elevated after prolonged viewing of this pattern, thus demonstrating the existence of motion adaptation in a retinal region surrounded by, but not covered by, a moving pattern. The amplitude of the moving induced-grating was measured by nulling with a real grating moving in the same direction and with the same speed as the surround. When the speed of the inducing grating was varied, the amplitude of the induced effect did not correlate with the magnitude of the threshold elevation. Therefore, it is unlikely that motion adaptation in the uniform gap was due to induced gratings. In some conditions, the adaptation effect of surrounding gratings was no less than the adaptation effect of gratings covering the test region. This result rules out an explantation involving scattered light, and indicates that motion adaptation occurs at a later stage than that consisting of simple motion mechanisms which confound the contrast and velocity of a moving stimulus.  相似文献   

9.
The existence of a directional motion aftereffect (MAE) for long-range (LR) stroboscopic apparent motion (SAM) was examined with the use of a directionally ambiguous test stimulus. The spatial and temporal parameters were such that the LR, rather than the short-range, mechanism was likely to be implicated. MAEs were found for SAM, which were in the same direction, but somewhat weaker than those for a comparable stimulus in real motion. The MAEs for SAM were present only when good apparent motion was perceived, and could be shown also when only the unstimulated area between the two stroboscopic flashes was tested. The LR mechanism was further implicated, since the MAEs were also obtained under dichoptic adaptation conditions. It is concluded that the LR-motion mechanism does show a usual MAE under proper testing conditions.  相似文献   

10.
Freeman TC  Sumnall JH 《Perception》2002,31(5):603-615
Abstract. Observers can recover motion with respect to the head during an eye movement by comparing signals encoding retinal motion and the velocity of pursuit. Evidently there is a mismatch between these signals because perceived head-centred motion is not always veridical. One example is the Filehne illusion, in which a stationary object appears to move in the opposite direction to pursuit. Like the motion aftereffect, the phenomenal experience of the Filehne illusion is one in which the stimulus moves but does not seem to go anywhere. This raises problems when measuring the illusion by motion nulling because the more traditional technique confounds perceived motion with changes in perceived position. We devised a new nulling technique using global-motion stimuli that degraded familiar position cues but preserved cues to motion. Stimuli consisted of random-dot patterns comprising signal and noise dots that moved at the same retinal 'base' speed. Noise moved in random directions. In an eye-stationary speed-matching experiment we found noise slowed perceived retinal speed as 'coherence strength' (ie percentage of signal) was reduced. The effect occurred over the two-octave range of base speeds studied and well above direction threshold. When the same stimuli were combined with pursuit, observers were able to null the Filehne illusion by adjusting coherence. A power law relating coherence to retinal base speed fit the data well with a negative exponent. Eye-movement recordings showed that pursuit was quite accurate. We then tested the hypothesis that the stimuli found at the null-points appeared to move at the same retinal speed. Two observers supported the hypothesis, a third partially, and a fourth showed a small linear trend. In addition, the retinal speed found by the traditional Filehne technique was similar to the matches obtained with the global-motion stimuli. The results provide support for the idea that speed is the critical cue in head-centred motion perception.  相似文献   

11.
The effect of varying the spatial relationships between an adapt/test grating and a stationary surrounding reference grating, and their interaction with diversion of attention during adaptation, were investigated in two experiments on the movement aftereffect (MAE). In experiment 1, MAEs were found to increase as the separation between the surrounding grating and the adapt/test grating decreased, but not with the area of the adapt/test grating. Although diversion during adaptation (repeating changing digits at the fixation point) reduced MAE durations, its effects did not interact with any of the stimulus variables. In experiment 2, MAE durations increased as the outer dimensions of the reference grating were increased, and this effect did interact with diversion, so that the effects of diversion were smaller when the surround grating was larger. This suggests that diversion may be affecting the inputs to an opponent process in motion adaptation, with a smaller effect on the surrounds than on the centres of antagonistic motion-contrast detectors with large receptive fields. A third experiment showed that, although repeating the word 'zero' during adaptation reduced MAEs, this reduction was smaller than that from naming a changing sequence of digits (and not significantly different from that from simply observing the changing digits), suggesting that MAE reductions are not produced only, if at all, by putative movements of the head and eyes caused by speaking.  相似文献   

12.
M T Swanston  N J Wade 《Perception》1992,21(5):569-582
The motion aftereffect (MAE) was measured with retinally moving vertical gratings positioned above and below (flanking) a retinally stationary central grating (experiments 1 and 2). Motion over the retina was produced by leftward motion of the flanking gratings relative to the stationary eyes, and by rightward eye or head movements tracking the moving (but retinally stationary) central grating relative to the stationary (but retinally moving) surround gratings. In experiment 1 the motion occurred within a fixed boundary on the screen, and oppositely directed MAEs were produced in the central and flanking gratings with static fixation; but with eye or head tracking MAEs were reported only in the central grating. In experiment 2 motion over the retina was equated for the static and tracking conditions by moving blocks of grating without any dynamic occlusion and disclosure at the boundaries. Both conditions yielded equivalent leftward MAEs of the central grating in the same direction as the prior flanking motion, ie an MAE was consistently produced in the region that had remained retinally stationary. No MAE was recorded in the flanking gratings, even though they moved over the retina during adaptation. When just two gratings were presented, MAEs were produced in both, but in opposite directions (experiments 3 and 4). It is concluded that the MAE is a consequence of adapting signals for the relative motion between elements of a display.  相似文献   

13.
Sokolov A  Pavlova M 《Perception》2003,32(6):699-706
By varying target size, speed, and extent of visible motion we examined the timing accuracy in motion extrapolation. Small or large targets (0.2 or 0.8 deg) moved at either 2.5, 5, or 10 deg s(-1) across a horizontal path (2.5 or 10 deg) and then vanished behind an occluder. Observers responded when they judged that the target had reached a randomly specified position between 0 and 12 deg. With higher speeds, the timing accuracy (the reverse of absolute error) was better for small than for large targets, and for long than for short visible extents. With low speed, these effects were reversed. In addition, while long visible extents yielded a greater accuracy at high than at low speeds, for short extents the accuracy was much better with the low speed. The findings suggest that, when extrapolating motion with targets and visible extents of different sizes, the visual system implements different scaling algorithms depending on target speed. At higher speeds, processing of visible and occluded motion is likely to share a common scaling mechanism based on velocity transposition. Reverse effects for target size and extent of visible motion at low and high speeds converge with the assumption of two distinct speed-tuned motion-processing mechanisms in human vision.  相似文献   

14.
Effect of image orientation on the eye direction aftereffect   总被引:1,自引:0,他引:1  
After observing a face with the eyes looking to the left or right (adaptation stimulus), the perception of the eye direction of the subsequent face (test stimulus) is biased in the opposite direction of the adapted eye direction; this is called the eye direction aftereffect (EDAE). In the present study, the adaptation stimuli were rotated 90° (clockwise or counterclockwise) or 180° relative to the viewer. The EDAE was measured using upright test stimuli. For the 90° rotation, prior observation of the leftward and rightward eye directions biased the perceived eye directions of the upright test stimuli to the right and left, respectively. These results suggest that the adaptation was induced utilizing an object-based (or face-based) reference frame. For the 180° rotation, however, the results suggest that the adaptation was induced in a viewer-centered reference frame. The involvement of an object-based reference frame suggests that the EDAE reflected the adaptation of a relatively higher-level mechanism at least when the rotation angle from the upright position did not exceed 90°.  相似文献   

15.
It has been established that the motion in depth of stimuli visible to both eyes may be signalled binocularly either by a change of disparity over time or by the difference in the velocity of the images projected on each retina, known as an interocular velocity difference. A two-interval forced-choice stereomotion speed discrimination experiment was performed on four participants to ascertain the relative speed of a persistent random dot stereogram (RDS) and a dynamic RDS undergoing directly approaching or receding motion in depth. While the persistent RDS pattern involved identical dot patterns translating in opposite directions in each eye, and hence included both changing disparity and interocular velocity difference cues, the dynamic RDS pattern (which contains no coherent monocular motion signals) specified motion in depth through changing disparity, but no motion through interocular velocity difference. Despite an interocular velocity difference speed signal of zero motion in depth, the dynamic RDS stimulus appeared to move more rapidly. These observations are consistent with a scheme in which cues that rely on coherent monocular motion signals (such as looming and the interocular velocity difference cue) are less influential in dynamic stimuli due to their lack of reliability (i.e., increased noise). While dynamic RDS stimuli may be relatively unaffected by the contributions of such cues when they signal that the stimulus did not move in depth, the persistent RDS stimulus may retain a significant and conflicting contribution from the looming cue, resulting in a lower perceived speed.  相似文献   

16.
Mitsudo H  Ono H 《Perception》2007,36(1):125-134
Two psychophysical experiments were conducted to investigate the mechanism that generates stable depth structure from retinal motion combined with extraretinal signals from pursuit eye movements. Stimuli consisted of random dots that moved horizontally in one direction (ie stimuli had common motion on the retina), but at different speeds between adjacent rows. The stimuli were presented with different speeds of pursuit eye movements whose direction was opposite to that of the common retinal motion. Experiment 1 showed that the rows moving faster on the retina appeared closer when viewed without eye movements; however, they appeared farther when pursuit speed exceeded the speed of common retinal motion. The 'transition' speed of the pursuit eye movement was slightly, but consistently, larger than the speed of common retinal motion. Experiment 2 showed that parallax thresholds for perceiving relative motion between adjacent rows were minimum at the transition speed found in experiment 1. These results suggest that the visual system calculates head-centric velocity, by adding retinal velocity and pursuit velocity, to obtain a stable depth structure.  相似文献   

17.
Some comparative experiments on the dichoptic induction of the movement aftereffect (MAE) contingent on color and the MAE contingent on orientation are reported. Colorcontingent movement aftereffects could be evoked only when the eye which had viewed color during adaptation also viewed color during test sessions. When the apparent color of the test field was changed by binocular color rivalry, contingent movement aftereffects (CMAEs) appropriate to the suppressed color were reported. After dichoptic induction of the orientation-contingent MAE, aftereffects could be obtained whether the eliciting gratings and stationary test fields were presented together to either eye alone or were dichoptically viewed.  相似文献   

18.
S Mateeff  J Hohnsbein 《Perception》1989,18(1):93-104
Subjects used eye movements to pursue a light target that moved from left to right with a velocity of 15 deg s-1. The stimulus was a sudden five-fold decrease in target intensity during the movement. The subject's task was to localize the stimulus relative to either a single stationary background point or the midpoint between two points (28 deg apart) placed 0.5 deg above the target path. The stimulus was usually mislocated in the direction of eye movement; the mislocation was affected by the spatial adjacency between background and stimulus. When an auditory, rather than a visual, stimulus was presented during tracking, target position at the time of stimulus presentation was visually mislocated in the direction opposite to that of eye movement. The effect of adjacency between background and target remained the same. The involvement of processes of subject-relative and object-relative visual perception is discussed.  相似文献   

19.
A Mack  J Hill  S Kahn 《Perception》1989,18(5):649-655
Two experiments are described in which it was investigated whether the adaptation on which motion aftereffects (MAEs) are based is a response to retinal image motion alone or to the motion signal derived from the process which combines the image motion signal with information about eye movement (corollary discharge). In both experiments observers either fixated a stationary point or tracked a vertically moving point while a pattern (in experiment 1, a grating; in experiment 2, a random-dot pattern) drifted horizontally across the field. In the tracking condition the adapting retinal motion was oblique. In the fixation condition it was horizontal. In every case in both conditions the MAE was horizontal, in the direction opposite to that of pattern motion. These results are consistent with the hypothesis that the adaptation is a response to the motion signal derived from the comparison of eye and image motion rather than to retinal motion per se. An alternative explanation is discussed.  相似文献   

20.
Subjects were exposed to angular decelerations of between 1 and 50 deg/sec’ (1) in total darkness, (2) in view of a dim subject-stationary fixation light, or (3) inside an illuminated subject-stationary striped cylinder (conflict stimulation). Vestibularly induced eye movements led to the oculogyral illusion of object motion. This phenomenon can be distinguished from that of the sensation of self-rotation. At the end of deceleration, the initial velocity of self-rotation sensation is similar during all three stimulus conditions, but is reduced in duration with the conflict stimulus. Differences of interpretation in the literature concerning these phenomena can be explained on the basis of the failure to distinguish between the oculogyral illusion and sensation of self-motion and the inability to fully suppress vestibular eye movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号