首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kelly DM  Bischof WF 《Cognition》2008,109(1):89-104
We investigated how human adults orient in enclosed virtual environments, when discrete landmark information is not available and participants have to rely on geometric and featural information on the environmental surfaces. In contrast to earlier studies, where, for women, the featural information from discrete landmarks overshadowed the encoding of the geometric information, Experiment 1 showed that when featural information is conjoined with the environmental surfaces, men and women encoded both types of information. Experiment 2 showed that, although both types of information are encoded, performance in locating a goal position is better if it is close to a geometrically or featurally distinct location. Furthermore, although features are relied upon more strongly than geometry, initial experience with an environment influences the relative weighting of featural and geometric cues. Taken together, these results show that human adults use a flexible strategy for encoding spatial information.  相似文献   

2.
Adults searched for a goal in images of a rectangular environment. The goal's position was constant relative to featural and geometric cues, but the absolute position changed across trials. Participants easily learned to use the featural cues to find the target, but learning to use only geometric information was difficult. Transformation tests revealed that participants used the color and shape of distinct features to encode the goal's position. When the features at the correct and geometrically equivalent corners were removed, participants could use distant features to locate the goal. Accuracy remained above chance when a single distant feature was present, but the feature farthest from the goal yielded lower accuracy than one closer. Participants trained with features spontaneously encoded the geometric information. However, this representation did not withstand orientation transformations.  相似文献   

3.
Pigeons (Columba livia) searched for a hidden target area in images showing a schematic rectangular environment. The absolute position of the goal varied across trials but was constant relative to distinctive featural cues and geometric properties of the environment. Pigeons learned to use both of these properties to locate the goal. Transformation tests showed that pigeons could use either the color or shape of the features, but performance was better with color cues present. Pigeons could also use a single featural cue at an incorrect corner to distinguish between the correct corner and the geometrically equivalent corner; this indicates that they did not simply use the feature at the correct corner as a beacon. Interestingly, pigeons that were trained with features spontaneously encoded geometry. The encoded geometric information withstood vertical translations but not orientation transformations.  相似文献   

4.
This study examined whether differences in the amount of information provided to men and women, in the form of verbal instruction, influenced their encoding during a reorientation task. When a navigator needs to orient, featural (e.g., colour or texture) and geometry (e.g., metric information) are used to determine which direction to begin traveling. The current study used a spatial reorientation task to examine how men and women use featural and geometric cues and whether the content of the task’s instructions influenced how these cues were used. Participants were trained to find a target location in a rectangular room with distinctive objects situated at each corner. Once the participants were accurately locating the target, various tests manipulating the spatial information were conducted. We found both men and women encoded the featural cues, and even though the features provided reliable information, participants generally showed an encoding of geometry. However, when participants were not provided with any information about the spatial aspects of the task in the instructions, they failed to encode geometry. We also found that women used distant featural cues as landmarks when the featural cue closest to the target was removed, whereas men did not. Yet, when the two types of cues were placed in conflict, both sexes weighed featural cues more heavily than geometric cues. The content of the task instructions also influenced how cues were relied upon in this conflict situation. Our results have important implications for our understanding of how spatial cues are used for reorientation.  相似文献   

5.
Growing in circles: rearing environment alters spatial navigation in fish   总被引:1,自引:0,他引:1  
ABSTRACT— Animals of many species use the geometric shape of an enclosed rectangular environment to reorient, even in the presence of a more informative featural cue. Manipulating the rearing environment affects performance on spatial tasks, but its effect on the use of geometric versus featural navigational cues is unknown. Our study varied the geometric information available in the rearing environment (circular vs. rectangular rearing tanks) of convict cichlids ( Archocentrus nigrofasciatus ) and tested their use of navigational cues. All the fish used geometric information to navigate when no features were present. When features were present, the fish used geometric and featural information separately. If cues were in conflict, fish raised in a circular tank showed significantly less use of geometric information than fish raised in a rectangular tank. Thus, the ability to use geometry to navigate does not require exposure to angular geometric cues during rearing, though rearing environment affects the dominance of featural and geometric cues.  相似文献   

6.
Vertebrates use geometric and featural information for spatial navigation. When both geometric and featural cues are available, animals can use a variety of spatial strategies based on this information. To examine the nature of these strategies, we manipulated the spatial relationship between a conspicuous cue and the position of the goal when goldfish (Carassius auratus) were searching for the exit of a rectangular environment with one distinctive wall. Two groups of fish were used, one with the distinctive wall close to the goal and the other with the distinctive wall on the other end of the enclosure. Results showed that fish encoded featural and geometric information in both conditions but the spatial relationship between the goal and the distinctive wall influences the characteristics of the encoding of the spatial cues and the strategy used to locate the goal. These results suggest that fish in both procedures use the local featural cues associated with the goal instead of the whole set of spatial cues as previous studies propose.  相似文献   

7.
Non-human animals and human children can make use of the geometric shape of an environment for spatial reorientation and in some circumstances reliance on purely geometric information (metric properties of surfaces and sense) can overcome the use of local featural cues. Little is known as to whether the use of geometric information is in some way reliant on past experience or, as would likely be argued by advocates of the notion of a geometric module, it is innate. We tested the navigational abilities of newborn domestic chicks reared in either rectangular or circular cages. Chicks were trained in a rectangular-shaped enclosure with panels placed at the corners to provide salient featural cues. Rectangular-reared and circular-reared chicks proved equally able to learn the task. When tested after removal of the featural cues, both rectangular- and circular-reared chicks showed evidence that they had spontaneously encoded geometric information. Moreover, when trained in a rectangular-shaped enclosure without any featural cues, chicks reared in rectangular-, circular-, or c-shaped cages proved to be equally able to learn and perform the task using geometric information. These results suggest that effective use of geometric information for spatial reorientation does not require experience in environments with right angles and metrically distinct surfaces, thus supporting the hypothesis of a predisposed geometric module in the animal brain.  相似文献   

8.
Many species have been shown to encode multiple sources of information to orient. To examine what kinds of information animals use to locate a goal we manipulated cue rotation, cue availability, and inertial orientation when the food-storing Clark’s nutcracker (Nucifraga columbiana) was searching for a hidden goal in a circular arena. Three groups of birds were used, each with a different goal–landmark distance. As the distance between the goal and the landmark increased, nutcrackers were less accurate in finding the correct direction to the goal than they were at estimating the distance (Experiment 1). To further examine what cues the birds were using to calculate direction, the featural cues within the environment were rotated by 90° and the birds were either oriented when searching (Experiments 2 and 3) or disoriented (Experiment 3). In Experiment 4, all distinctive visual cues were removed (both internal and external to the environment), a novel point of entry was used and the birds were either oriented or disoriented. We found that disorienting the nutcrackers so that they could not use inertial cues did not influence the birds’ total search error. The birds relied heavily but not completely on cues within the environment, as rotating available cues caused them to systematically shift their search behavior. In addition, the birds also relied to some extent on Earth-based cues. These results show the flexible nature of cue use by the Clark’s nutcracker. Our study shows how multiple sources of spatial information may be important for extracting multiple bearings for navigation.  相似文献   

9.
Animals can reorient making use of the geometric shape of an environment, i.e., using sense and metric properties of surfaces. Animals reared soon after birth either in circular or in rectangular enclosures (and thus affording different experiences with metric properties of the spatial layout) showed similar abilities when tested for spatial reorientation in a rectangular enclosure. Thus, early experience in environments with different geometric characteristics does not seem to affect animals’ ability to reorient using sense and metric information. However, some results seem to suggest that when geometric and non-geometric information are set in conflict, rearing experience could affect the relative dominance of featural (landmark) and geometric information. In three separate experiments, newborn chicks reared either in circular- or in rectangular-shaped home-cages were tested for spatial reorientation in a rectangular enclosure, with featural information provided either by panels at the corners or by a blue-coloured wall. At test, when faced with affine transformations in the arrangement of featural information that contrasted with the geometric information, chicks showed no evidence of any effect of early experience on their relative use of geometric and featural information for spatial reorientation. These findings suggest that, at least for this highly precocial species, the ability to deal with geometry seems to depend more on predisposed mechanisms than on learning and experience after hatching.  相似文献   

10.
《Acta psychologica》2013,142(2):251-258
We tested associative-based accounts of orientation by investigating the influence of environment size on the use of feature and geometric cues for reorientation. Two groups of participants were trained in dynamic three-dimensional virtual rectangular environments that differed in size to find a distinctly colored bin located at one of the four corners. Subsequently, we probed the reliance on feature and geometric cues for reorientation during test trials by presenting six trial types: Small Geometry Only, Large Geometry Only, Small Cue Conflict, Large Cue Conflict, Small Distal, and Large Distal. During Geometry Only test trials, all bins were black; thus, all distinctive featural information was removed leaving only geometric cues. For Cue Conflict test trials, all colored bins were shifted counter-clockwise one corner; thus, the geometric cues from the trained corner and the trained color were in direct conflict. During Distal test trials, the bin in the geometrically incorrect corner farthest from the trained corner was colored the same as during training; the remaining three bins were black. Thus, only this distant feature cue could be used to determine the location of the goal bin. Results suggested that geometric cues were used across changes in environment size, featural cues exerted greater influence when in conflict with geometric cues, and the far featural cue was used to disambiguate the correct from the rotationally equivalent location. In short, both feature and geometric cues were used for reorientation, and environment size influenced the relative use of feature and geometric cues. Collectively, our results provide evidence against associative-based accounts of orientation.  相似文献   

11.
Several studies investigated the role of featural and configural information when processing facial identity. A lot less is known about their contribution to emotion recognition. In this study, we addressed this issue by inducing either a featural or a configural processing strategy (Experiment 1) and by investigating the attentional strategies in response to emotional expressions (Experiment 2). In Experiment 1, participants identified emotional expressions in faces that were presented in three different versions (intact, blurred, and scrambled) and in two orientations (upright and inverted). Blurred faces contain mainly configural information, and scrambled faces contain mainly featural information. Inversion is known to selectively hinder configural processing. Analyses of the discriminability measure (A′) and response times (RTs) revealed that configural processing plays a more prominent role in expression recognition than featural processing, but their relative contribution varies depending on the emotion. In Experiment 2, we qualified these differences between emotions by investigating the relative importance of specific features by means of eye movements. Participants had to match intact expressions with the emotional cues that preceded the stimulus. The analysis of eye movements confirmed that the recognition of different emotions rely on different types of information. While the mouth is important for the detection of happiness and fear, the eyes are more relevant for anger, fear, and sadness.  相似文献   

12.
It has been suggested that face recognition is primarily based on configural information, with featural information playing little or no role. We investigated this idea by comparing the prototype effect for face prototypes that emphasized either featural or configural processing. In Experiment 1, participants showed a tendency to commit false alarms in response to nonstudied prototypes, and this tendency was equivalent for featural and configural prototypes. Experiment 2 replicated this finding, and provided support for the assumption that the two types of prototypes differed in terms of featural and configural processing: Face inversion eliminated the prototype effect for configural prototypes but not for featural prototypes. These results suggest that both featural and configural processing make important contributions to face recognition, and that their effects are dissociable.  相似文献   

13.
Recent research has documented how single facial features can trigger person categorization. Questions remain, however, regarding the automaticity of the reported effects. Using a modified flanker paradigm, the current investigation explored the extent to which hair cues drive sex categorization when faces comprise task‐irrelevant (i.e., unattended) stimuli. In three experiments, participants were required to classify target forenames by gender while ignoring irrelevant flanking faces with and without hair cues. When present, hair cues were either congruent or incongruent with prevailing cultural stereotypes. The results demonstrated the potency of category‐specifying featural cues. First, flanker interference only emerged when critical hair cues were present (Experiment 1). Second, flankers with stereotype‐incongruent hairstyles (e.g., men with long hair) facilitated access to information associated with the opposite sex (Experiment 2), even when the flankers were highly familiar celebrities (Experiment 3). The theoretical implications of these findings are considered. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Although working memory has a highly constrained capacity limit of three or four items, both adults and toddlers can increase the total amount of stored information by "chunking" object representations in memory. To examine the developmental origins of chunking, we used a violation-of-expectation procedure to ask whether 7-month-old infants, whose working memory capacity is still maturing, also can chunk items in memory. In Experiment 1, we found that in the absence of chunking cues, infants failed to remember three identical hidden objects. In Experiments 2 and 3, we found that infants successfully remembered three hidden objects when provided with overlapping spatial and featural chunking cues. In Experiment 4, we found that infants did not chunk when provided with either spatial or featural chunking cues alone. Finally, in Experiment 5, we found that infants also failed to chunk when spatial and featural cues specified different chunks (i.e., were pitted against each other). Taken together, these results suggest that chunking is available before working memory capacity has matured but still may undergo important development over the first year of life.  相似文献   

15.
Recent work has shown that in place-finding tasks rats rely on the geometric relations between the goal object and the shape of the environment. We tested young chickens (Gallus gallus domesticus) on similar tasks in a reference memory paradigm to determine whether differences exist between species in the ability to use geometric and nongeometric spatial information. The main findings were that chicks: (a) encoded and used both geometric and nongeometric (featural) information; (b) did not use the overall spatial arrangement of the features; (c) relied primarily on nongeometric cues when faced with contradictory information. Two mechanisms are evident in chicks' spatial representations: a metric frame for encoding the spatial arrangement of surfaces as surfaces and a cue-guidance system for encoding conspicuous landmarks near the target. The possibility of hierarchical organization and species differences in these two mechanisms are discussed.  相似文献   

16.
Two experiments investigated the influence of top-down information on adult age differences in the ability to search for singleton targets using spatial cues. In Experiment 1, both younger and older adults were equally able to use target-related top-down information (target feature predictability) to avoid attentional capture by uninformative (25% valid) cues. However, during informative (75% valid) cue conditions, older adults demonstrated less efficient use of this cue-related top-down information. The authors extended these findings in Experiment 2 using cues that were either consistent or inconsistent with top-down feature settings. Results from this second experiment showed that although older adults were capable of avoiding attentional capture when provided with top-down information related to target features, capture effects for older adults were notably larger than those of younger adults when only bottom-up information was available. The authors suggest that older adults' ability to use top-down information during search to avoid or attend to cues may be resource-limited.  相似文献   

17.
Vertebrate species use geometric information and non-geometric or featural cues to orient. Under some circumstances, when both geometric and non-geometric information are available, the geometric information overwhelms non-geometric cues (geometric primacy). In other cases, we observe the inverse tendency or the successful integration of both cues. In past years, modular explanations have been proposed for the geometric primacy: geometric and non-geometric information are processed separately, with the geometry module playing a dominant role. The modularity issue is related to the recent debate on the encoding of geometric information: is it innate or does it depend on environmental experience? In order to get insight into the mechanisms that cause the wide variety of behaviors observed in nature, we used Artificial Life experiments. We demonstrated that agents trained mainly with a single class of information oriented efficiently when they were exposed to one class of information (geometric or non-geometric). When they were tested in environments that contained both classes of information, they displayed a primacy for the information that they had experienced more during their training phase. Encoding and processing geometric and non-geometric information was run in a single cognitive neuro-representation. These findings represent a theoretical proof that the exposure frequency to different spatial information during a learning/adaptive history could produce agents with no modular neuro-cognitive systems that are able to process different types of spatial information and display various orientation behaviors (geometric primacy, non-geometric primacy, no primacy at all).  相似文献   

18.
Although geometric reorientation has been extensively studied in numerous species, most research has been conducted in enclosed environments and has focused on use of the geometric property of relative wall length. The current studies investigated how angular information is used by adult humans and pigeons to orient and find a goal in enclosures or arrays that did not provide relative wall length information. In enclosed conditions, the angles formed a diamond shape connected by walls, whereas in array conditions, free-standing angles defined the diamond shape. Adult humans and pigeons were trained to locate two geometrically equivalent corners, either the 60° or 120° angles. Blue feature panels were located in the goal corners so that participants could use either the features or the local angular information to orient. Subsequent tests in manipulated environments isolated the individual cues from training or placed them in conflict with one another. In both enclosed and array environments, humans and pigeons were able to orient when either the angles or the features from training were removed. On conflict tests, female, but not male, adult humans weighted features more heavily than angular geometry. For pigeons, angles were weighted more heavily than features for birds that were trained to go to acute corners, but no difference in weighting was seen for birds trained to go to obtuse corners. These conflict test results were not affected by environment type. A subsequent test with pigeons ruled out an interpretation based on exclusive use of a principal axis rather than angle. Overall, the results indicate that, for both adult humans and pigeons, angular amplitude is a salient orientation cue in both enclosures and arrays of free-standing angles.  相似文献   

19.
Children are nearly as sensitive as adults to some cues to facial identity (e.g., differences in the shape of internal features and the external contour), but children are much less sensitive to small differences in the spacing of facial features. To identify factors that contribute to this pattern, we compared 8-year-olds' sensitivity to spacing cues with that of adults under a variety of conditions. In the first two experiments, participants made same/different judgments about faces differing only in the spacing of facial features, with the variations being kept within natural limits. To measure the effect of attention, we reduced the salience of featural information by blurring faces and occluding features (Experiment 1). To measure the role of encoding speed and memory limitations, we presented pairs of faces simultaneously and for an unlimited time (Experiment 2). To determine whether participants' sensitivity would increase when spacing distortions were so extreme as to make the faces grotesque, we manipulated the spacing of features beyond normal limits and asked participants to rate each face on a "bizarreness" scale (Experiment 3). The results from the three experiments indicate that low salience, poor encoding efficiency, and limited memory can partially account for 8-year-olds' poor performance on face processing tasks that require sensitivity to the spacing of features, a kind of configural processing that underlies adults' expertise. However, even when the task is modified to compensate for these problems, children remain less sensitive than adults to the spacing of features.  相似文献   

20.
The present study examined whether younger and older children differ in the use of the goal-related information in a continuous performance task (AX-CPT), and if so, whether those age differences are due to the ability to represent and/or maintain goal information. Experiment 1 compared third- and sixth-grade children in their ability to transform the identity of letter cues into goal representations, as well as to sustain those goal representations during a long (5,500 ms) cue-probe delay in the AX-CPT. Experiment 2 used a short cue-probe delay (1,000 ms) and thereby eliminated the demands of maintaining goal representations in working memory. In addition, Experiment 2 varied the level of demand that was placed on the ability to represent context information by varying the features of letter cues. The combined results of these experiments indicated that sixth graders were superior to third graders in cognitive control under conditions that placed demands on either the ability to represent or maintain goal-related information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号