首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prediction emanating from memory drum theory (Henry & Rogers, 1960') that simple reaction time (SRT) increases as a response becomes more complex (i.e., increases in number of movement parts) was investigated. Experiments 1 (N = 20) and 3 (N = 16) indicated that SRT was longer for responses consisting of two and three parts than it was for a one-part response and this may be interpreted as support for the prediction. Failing to support the prediction, however, was the finding that SRT was essentially the same for responses consisting of two and three parts. This may not be too damaging to the theory because it could simply be reflecting an upper limit in terms of numbers of parts or response duration for causing an increase in SRT. Experiments 2 (N = 20) and 3 revealed an SRT effect between two responses that were supposed to be equal in complexity. At first, this finding appeared to be contrary to the prediction, but it may be interpreted as support for it because one of the responses defined as having one movement part could actually have had two  相似文献   

2.
Two experiments investigated the memory drum theory's prediction (Henry & Rogers, 1960) that simple reaction time (SRT) increased with the complexity of the response to be initiated. Experiment 1 (N = 9) matched the Experiment 1, Group 1, SRT condition described by Henry and Rogers. Results of Experiment 1 replicated those of Henry and Rogers and indicated that the memory drum theory's prediction of increased SRT as a function of increased complexity of response was tenable. Experiment 2 (N = 11) tested the effects of anatomical unit, extent and target size on SRT, premotor time, and motor time. The results supported the contention that alternative explanations for SRT were possible. With complexity constant, increases in anatomical unit lead to increases in SRT, but only in the motor time component which indicated electromechanical rather than neuromotor program delays. It is proposed that the increased motor time could be explained by peripheral events such as the duration maximum torque must be applied by the agonist muscle(s) to generate the angular acceleration required to initiate rapid movement. SRT, premotor time, and motor time increased when target size was reduced from 6.35 cm to 79 cm. The increased premotor time could be a function of the determining of new equilibrium points for the elbow joint during response initiation. No effects on SRT were observed for extent.  相似文献   

3.
Two experiments investigated the memory drum theory’s prediction (Henry & Rogers, 1960) that simple reaction time (SRT) increased with the complexity of the response to be initiated. Experiment 1 (N = 9) matched the Experiment 1, Group 1, SRT condition described by Henry and Rogers. Results of Experiment 1 replicated those of Henry and Rogers and indicated that the memory drum theory’s prediction of increased SRT as a function of increased complexity of response was tenable. Experiment 2 (N = 11) tested the effects of anatomical unit, extent, and target size on SRT, premotor time, and motor time. The results supported the contention that alternative explanations for SRT were possible. With complexity constant, increases in anatomical unit lead to increases in SRT, but only in the motor time component which indicated electromechanical rather than neuromotor program delays. It is proposed that the increased motor time could be explained by peripheral events such as the duration maximum torque must be applied by the agonist muscle(s) to generate the angular acceleration required to initiate rapid movement. SRT, premotor time, and motor time increased when target size was reduced from 6.35 cm to .79 cm. The increased premotor time could be a function of the determining of new equilibrium points for the elbow joint during response initiation. No effects on SRT were observed for extent.  相似文献   

4.
The variable that affect motor programming time may be studied by changing the nature of the response and measuring the subsequent changes in reaction time (RT). One notion of motor programming suggests that aiming responses with reduced target size and/or increased target amplitude require more "complex" motor programs that require longer RTs. In a series of five experiments which movement time (MT) was experimentally varied target size neither influences RT when the movement amplitude was 2 or 30 cm nor when the target sizes differed by as much as a factor of 16:1. Increasing the movement amplitude from 15 to 30 cm also had no influence on RT. Movement time, however, did affect RT, with 200-msec movements having longer RTs than 120-msec movements. Target size and movement amplitude did not appear to be factors that influence programming time or program complexity.  相似文献   

5.
The goal of the present study was to determine the combined effects of movement velocity and duration on motor programming. Subjects were submitted to a two-choice reaction time task that could be completed by aiming movements differing in the mean velocity at which they were to be produced as well as by their movement time. The results of the present study indicate that, in each pair of responses used, the responses having the higher mean velocity were initiated faster that those having the lower mean velocity. Contrary to Spijkers' (1989) study, the different movement time pairings did not modify the effect of movement velocity on response programming time. Moreover, the same pattern of results was observed whether or not the subjects were permitted to visually guide their ongoing movement. Thus, Spijkers' proposition, that the type of control one may use to guide an aiming movement needs to be determined before movement initiation can take place, was not confirmed.  相似文献   

6.
Three experiments are reported that test the hypothesis that under certain conditions programming time is a function of the directional accuracy demand of a response, directional accuracy being quantified by the minimal angle subtended at the point of movement initiation by the circular targets within the response. Subjects in three simple reaction time experiments were required to tap a single target or a series of circular targets as rapidly as possible with a hand-held stylus. Experiments 1 and 3 showed that the subtended angle (SA) of a response can have a more powerful effect on programming time, as indexed by reaction time and premotor time, than the number of movement parts in the response. The results of Experiment 2 revealed that the locus of the directional accuracy effect was SA and not target size or movement distance. In all three experiments, response SA was a better predictor of programming time than was number of movement parts, target size, movement distance, movement time, and average movement velocity. The findings support the notion that constraints placed upon movement initiation by the directional accuracy demand of the task can play an important role in determining the length of the programming process.  相似文献   

7.
Most theories of the programming of saccadic eye movements (SEM) agree that direction and amplitude are the two basic dimensions that are under control when an intended movement is planned. But they disagree over whether these two basic parameters are specified separately or in conjunction. We measured saccadic reaction time (SRT) in a situation where information about amplitude and direction of the required movement became available at different moments in time. The delivery of information about either direction or amplitude prior to another reduced duration of SRT demonstrated that direction and amplitude were specified separately rather than in conjunction or in a fixed serial order. All changes in SRT were quantitatively explained by a simple growth-process (accumulator) model according to which a movement starts when two separate neural activities, embodying the direction and amplitude programming, have both reached a constant threshold level of activity. Although, in isolation, the amplitude programming was faster than the direction programming, the situation reversed when two dimensions had to be specified at the same time. We conclude that beside the motor maps representing the desired final position of the eye or a fixed movement vector, another processing stage is required in which the basic parameters of SEM, direction and amplitude, are clearly separable.  相似文献   

8.
Increases in reaction time (RT) as a function of response complexity have been shown to differ between simple and choice RT tasks. Of interest in the present study was whether the influence of response complexity on RT depends on the extent to which movements are programmed in advance of movement initiation versus during execution (i.e., online). The task consisted of manual aiming movements to one or two targets (one- vs. two-element responses) under simple and choice RT conditions. The probe RT technique was employed to assess attention demands during RT and movement execution. Simple RT was greater for the two- than for the single-target responses but choice RT was not influenced by the number of elements. In both RT tasks, reaction times to the probe increased as a function of number of elements when the probe occurred during movement execution. The presence of the probe also caused an increase in aiming errors in the simple but not choice RT task. These findings indicated that online programming was occurring in both RT tasks. In the simple RT task, increased executive control mediated the integration between response elements through the utilization of visual feedback to facilitate the implementation of the second element.  相似文献   

9.
Increases in reaction time (RT) as a function of response complexity have been shown to differ between simple and choice RT tasks. Of interest in the present study was whether the influence of response complexity on RT depends on the extent to which movements are programmed in advance of movement initiation versus during execution (i.e., online). The task consisted of manual aiming movements to one or two targets (one- vs. two-element responses) under simple and choice RT conditions. The probe RT technique was employed to assess attention demands during RT and movement execution. Simple RT was greater for the two- than for the single-target responses but choice RT was not influenced by the number of elements. In both RT tasks, reaction times to the probe increased as a function of number of elements when the probe occurred during movement execution. The presence of the probe also caused an increase in aiming errors in the simple but not choice RT task. These findings indicated that online programming was occurring in both RT tasks. In the simple RT task, increased executive control mediated the integration between response elements through the utilization of visual feedback to facilitate the implementation of the second element.  相似文献   

10.
The goal of the present study was to determine the combined effects of movement velocity and duration on motor programming. Subjects were submitted to a two-choice reaction time task that could be completed by aiming movements differing in the mean velocity at which they were to be produced as well as by their movement time. The results of the present study indicate that, in each pair of responses used, the responses having the higher mean velocity were initiated faster than those having the lower mean velocity. Contrary to Spijkers' (1989) study, the different movement time pairings did not modify the effect of movement velocity on response programming time. Moreover, the same pattern of results was observed whether or not the subjects were permitted to visually guide their ongoing movement. Thus, Spijkers' proposition, that the type of control one may use to guide an aiming movement needs to be determined before movement initiation can take place, was not confirmed.  相似文献   

11.
The relationship between attention and the programming of motor responses was investigated, using a paradigm in which the onsets of targets for movements were preceded by peripheral attentional cues. Simple (button release) and reaching manual responses were compared under conditions in which the subjects either made saccades toward the target location or refrained from making eye movements. The timing of the movement onset was used as the dependent measure for both simple and reaching manual responses. Eye movement latencies were also measured. A follow-up experiment measured the effect of the same peripheral cuing procedure on purely visual processes, using signal detection measures of visual sensitivity and response bias. The results of the first experiment showed that reaction time (RT) increased with the distance between the cued and the target locations. Stronger distance effects were observed when goal-directed responses were required, which suggests enhanced attentional localization of target positions under these conditions. The requirement to generate an eye movement response was found to delay simple manual RTs. However, mean reaching RTs were unaffected by the eye movement condition. Distance gradients on eye movement latencies were relatively shallow, as compared with those on goal-directed manual responses. The second experiment showed that the peripheral cue had only a very small effect on visual detection sensitivity in the absence of directed motor responses. It is concluded that cue-target distance effects with peripheral cues are modulated by the motor-programming requirements of the task. The effect of the peripheral cue on eye movement latencies was qualitatively different from that observed on manual RTs, indicating the existence of separate neural representations underlying both response types. At the same time, the interactions between response modalities are consistent with a supramodal representation of attentional space, within which different motor programs may interact.  相似文献   

12.
The relationship between attention and the programming of motor responses was investigated, using a paradigm in which the onsets of targets for movements were preceded by peripheral attentional cues. Simple (button release) and reaching manual responses were compared under conditions in which the subjects either made saccades toward the target location or refrained from making eye movements. The timing of the movement onset was used as the dependent measure for both simple and reaching manual responses. Eye movement latencies were also measured. A follow-up experiment measured the effect of the same peripheral cuing procedure on purely visual processes, using signal detection mea-sures of visual sensitivity and response bias. The results of the first experiment showed that reaction time (RT) increased with the distance between the cued and the target locations. Stronger distance ef-fects were observed when goal-directed responses were required, which suggests enhanced attentional localization of target positions under these conditions. The requirement to generate an eye movement response was found to delay simple manual RTs. However, mean reaching RTs were unaffected by the eye movement condition. Distance gradients on eye movement latencies were relatively shallow, as compared with those on goal-directed manual responses. The second experiment showed that the peripheral cue had only a very small effect on visual detection sensitivity in the absence of directed motor responses. It is concluded that cue-target distance effects with peripheral cues are modulated by the motor-programming requirements of the task. The effect of the peripheral cue on eye movement latencies was qualitatively different from that observed on manual RTs, indicating the existence of separate neural representations underlying both response types. At the same time, the interactions be-tween response modalities are consistent with a supramodal representation of attentional space, within which different motor programs may interact.  相似文献   

13.
We investigated the changes in the motor synergies of target-tracking movements of hands and the responses to perturbation when the dimensionalities of target positions were changed. We used uncontrolled manifold (UCM) analyses to quantify the motor synergies. The target was changed from one to two dimensions, and the direction orthogonal to the movement direction was switched from task-irrelevant directions to task-relevant directions. The movement direction was task-relevant in both task conditions. Hence, we evaluated the effects of constraints on the redundant dimensions on movement tracking. Moreover, we could compare the two types of responses to the same directional perturbations in one- and two-dimensional target tasks. In the one-dimensional target task, the perturbation along the movement direction and the orthogonal direction were task-relevant and -irrelevant perturbations, respectively. In the two-dimensional target task, the both perturbations were task-relevant perturbations. The results of the experiments showed that the variabilities of the hand positions in the two-dimensional target-tracking task decreased, but the variances of the joint angles did not significantly change. For the task-irrelevant perturbations, the variances of the joint angles within the UCM that did not affect hand position (UCM component) increased. For the task-relevant perturbations, the UCM component tended to increase when the available UCM was large. These results suggest that humans discriminate whether the perturbations were task-relevant or -irrelevant and then adjust the responses of the joints by utilizing the available UCM.  相似文献   

14.
Using single neuron recordings in monkey primary motor (MI) cortex, two series of experiments were conducted in order to know whether response preparation can begin before perceptual processing finishes, thus providing evidence for a temporal overlap of perceptual and motor processes.

In Experiment 1, a “left/right, Go/No-Go” reaction time (RT) task was used. One monkey was trained to perform wrist flexion/extension movements to align a pointer with visual targets. The visual display was organized to provide a two-dimensional stimulus: side (an easy discrimination between left and right targets) which determined movement direction, and distance (a difficult discrimination between distal and proximal targets) which determined whether or not the movement was to be made. Changes in neuronal activity, when they were time-locked to the stimulus, were almost similar in the Go and No-Go trials, and when they were time-locked to movement onset, were markedly reduced in No-Go as compared to Go trials.

In Experiment 2, a stimulus-response compatibility (SRC) task was used. Two monkeys were trained to align a pointer with visual targets, on either left or right. In the spatially “compatible” trials, they had to point at the stimulus position, whereas in the “incompatible” trials, they had to point at the target located in the opposite side. For 12.5% of neurons, changes in activity associated with incompatible trials looked like changes in activity associated with movements performed in the opposite direction during compatible trials, thus suggesting the hypothesis of an automatic activation of the congruent, but incorrect response.

Results of both experiments provide evidence for a partial transmission of information from visual to motor cortical areas: that is, in the No-Go trials of the first task, information about movement direction, before the decision to perform or not this movement was made, and, in the incompatible trials of the SRC task, information about the congruent, but incorrect response, before the incongruent, but correct response was programmed.  相似文献   


15.
《Human movement science》1999,18(2-3):443-459
Movement-related cortical potentials recorded from the scalp reveal increasing cortical activity occurring prior to voluntary movement. Studies of set-related cortical activity recorded from single neurones within premotor and supplementary motor areas in monkeys suggest that such premovement activity may act to prime activity of appropriate motor units in readiness to move, thereby facilitating the movement response. Such a role of early stage premovement activity in movement-related cortical potentials was investigated by examining the relationship between premovement cortical activity and movement initiation or reaction times. Parkinson's disease and control subjects performed a simple button-pressing reaction time task and individual movement-related potentials were averaged for responses with short compared with long reaction times. For Parkinson's disease subjects but not for the control subjects, early stage premovement cortical activity was significantly increased in amplitude for faster reaction times, indicating that there is indeed a relationship between premovement cortical activity amplitude and movement initiation or reaction times. In support of studies of set-related cortical activity in monkeys, it is therefore suggested that early stage premovement activity reflects the priming of appropriate motor units of primary motor cortex, thereby reducing movement initiation or reaction times.PsycINFO classification: 2330; 2520; 2530  相似文献   

16.
This study investigated the interaction of experimental instructions and response complexity in an attempt to provide a possible explanation for some of the equivocalness in the programming time literature. Response complexity was manipulated by varying the accuracy required of subjects striking circular targets in a simple reaction time paradigm. Subjects were tested on two days, one week apart, during which experimental instructions emphasized either leaving the start position as soon as possible (initiation emphasis) or completing the response with a rapid but smooth movement (form emphasis). Subjects had shorter reaction times but longer movement times when they performed under initiation-emphasis instructions rather than under form-emphasis instructions. Furthermore, in contrast to form-emphasis conditions, there was no effect of response complexity on reaction time in conditions of initiation emphasis. It appears that subtle changes in experimental instructions can lead to very different patterns of reaction time and movement time data. These findings highlight the need for caution in preparing subject instructions in response programming experiments.  相似文献   

17.
One method of investigating human motor programming is to determine how the choice reaction time for a memorized response sequence depends on the composition of that sequence as well as the other sequence that may be required. Using this method, Rose (1988) found that the total number of responses in the two possible response sequences predicts the choice reaction time to initiate either one. On the basis of this result, Rose claimed that the hierarchical editor (HED) model of motor programming, developed by Rosenbaum, Inhoff, and Gordon (1984), may have to be reevaluated. In this commentary I argue that Rose's results are inconsistent with a precursor of the HED model, not with the HED model itself, that the HED model actually provides a better fit to Rose's data than her total-number-of-responses model, that in general, choice reaction time does not increase with the total number of possible responses, and that structural relations between alternative movement sequences are the main determinants of choice reaction time. Taken as a whole, the results suggest that possible responses are not held in completely readied form before being selected for execution. A further implication is that the storage capacity of the motor output buffer (the MOB) is extremely limited.  相似文献   

18.
Skilled movement is mediated by motor commands executed with extremely fine temporal precision. The question of how the brain incorporates temporal information to perform motor actions has remained unanswered. This study investigated the effect of stimulus temporal predictability on response timing of speech and hand movement. Subjects performed a randomized vowel vocalization or button press task in two counterbalanced blocks in response to temporally-predictable and unpredictable visual cues. Results indicated that speech and hand reaction time was decreased for predictable compared with unpredictable stimuli. This finding suggests that a temporal predictive code is established to capture temporal dynamics of sensory cues in order to produce faster movements in responses to predictable stimuli. In addition, results revealed a main effect of modality, indicating faster hand movement compared with speech. We suggest that this effect is accounted for by the inherent complexity of speech production compared with hand movement. Lastly, we found that movement inhibition was faster than initiation for both hand and speech, suggesting that movement initiation requires a longer processing time to coordinate activities across multiple regions in the brain. These findings provide new insights into the mechanisms of temporal information processing during initiation and inhibition of speech and hand movement.  相似文献   

19.
The relation between reaction time and the number of elements in a response has been shown to depend on whether simple or choice RT paradigms are employed. The purpose of the present study was to investigate whether advance information about the number of elements is the critical factor mediating the influence between reaction time and response elements. Participants performed aiming movements that varied in terms of the number of elements and movement amplitude. Prior to the stimulus, advance information was given about the number of elements and movement amplitude, movement amplitude only, number of elements only, or no information about the response. Reaction time and movement time to the first target increased as a function of number of elements only when the full response or the number of elements was specified in advance of the stimulus. The implication of these results for current models of motor programming and sequential control of aiming movements are discussed.  相似文献   

20.
Two experiments examined the effect of altering the moment of inertia within an anatomical unit on simple reaction time (SRT), premotor time (PMT), and motor time (MOT) during the initiation of a discrete rapid movement. In Experiment 1 (N = 14), moment of inertia of the forearm was increased with the addition of a weighted cuff fastened around the wrist. In Experiment 2 (N = 7), moment of inertia was altered by the addition of a weighted sleeve to the index finger prior to rapid extension of the digit. Results from both experiments were unequivocal. An increase in the moment of inertia resulted in a significant increase in SRT and MOT but had no significant effect on PMT. Within selected anatomical unites (forearm and index finger), an increase in the moment of inertia does not appear to require additional neuromotor programming time but does influence the overall duration of response initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号