首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate hemispheric differences in the timing of word priming, the modulation of event-related potentials by semantic word relationships was examined in each cerebral hemisphere. Primes and targets, either categorically (silk-wool) or associatively (needle-sewing) related, were presented to the left or right visual field in a go/no-go lexical decision task. The results revealed significant reaction-time and physiological differences in both visual fields only for associatively related word pairs, but an electrophysiological difference also tended to reach significance for categorically related words when presented in the left visual field. ERP waveforms showed a different time-course of associative priming effects according to the field of presentation. In the right visual field/left hemisphere, both N400 and Late Positive Component (LPC/P600) were modulated by semantic relatedness, while only a late effect was present in the left visual field/ right hemisphere.  相似文献   

2.
We report the results of two visual half-field semantic priming experiments using a high proportion of related trials to examine hemisphere asymmetries for semantic processes beyond those attributable to automatic meaning activation. Contrary to previous investigations, we obtained inhibition for unrelated trials in both visual fields. However, priming was additive (being greater for words related via category membership and association than for either single dimension) only when words were presented to the RVF/left hemisphere. A third experiment, using centrally presented stimuli, implied that semantic additivity should be attributed to post-access meaning comparisons and inhibition to the generation of semantic expectancies. These results suggest (1) that inhibition and additivity are potentially dissociable "controlled" semantic processes and (2) that the left hemisphere predominates for meaning integration across successively presented words. The availability of finely tuned meaning integration processes in the left hemisphere may contribute to its superiority in language processing, despite right hemisphere competence for some semantic operations.  相似文献   

3.
This study investigated spreading activation for words presented to the left and right hemispheres using an automatic semantic priming paradigm. Three types of semantic relations were used: similar-only (Deer-Pony), associated-only (Bee-Honey), and similar + associated (Doctor-Nurse). Priming of lexical decisions was symmetrical over visual fields for all semantic relations when prime words were centrally presented. However, when primes and targets were lateralized to the same visual field, similar-only priming was greater in the LVF than in the RVF, no priming was obtained for associated-only words, and priming was equivalent over visual fields for similar + associated words. Similar results were found using a naming task. These findings suggest that it is important to lateralize both prime and target information to assess hemisphere-specific spreading activation processes. Further, while spreading activation occurs in either hemisphere for the most highly related words (those related by category membership and association), our findings suggest that automatic access to semantic category relatedness occurs primarily in the right cerebral hemisphere. These results imply a unique role for the right hemisphere in the processing of word meanings. We relate our results to our previous proposal (Burgess & Simpson, 1988a; Chiarello, 1988c) that there is rapid selection of one meaning and suppression of other candidates in the left hemisphere, while activation spreads more diffusely in the right hemisphere. We also outline a new proposal that activation spreads in a different manner for associated words than for words related by semantic similarity.  相似文献   

4.
The way in which the semantic information associated with people is organised in the brain is still unclear. Most evidence suggests either bilateral or left hemisphere lateralisation. In this paper we use a lateralised semantic priming paradigm to further examine this neuropsychological organisation. A clear semantic priming effect was found with greater priming occurring when semantically related prime faces were presented to the left visual field than when presented to the right visual field. Possible explanations for this finding are discussed in terms of the bilateral distribution of different classes of semantic information, a possible role of associative processes within semantic priming and interhemispheric transfer.  相似文献   

5.
    
This study set out to evaluate Cook’s (1986) topographical inhibitory model of language processing in the hemispheres. The model employs the neurophysiological mechanism of homotopic callosal inhibition to explain recent findings which suggest that the left hemisphere processes denotative meaning, while the right hemisphere specializes in connotative meaning. Specific predictions in relation to lateralized priming phenomena were derived from the model. The first experiment tested the prediction that word repetition and denotative priming would facilitate responses to right visual field targets, while connotative priming would favour the left visual field. None of these predictions were confirmed. A second experiment modified in a number of ways, provided a more extensive test of the predictions but produced essentially the same result. It was concluded that no evidence could be obtained to support the topographical inhibitory model. Instead, the results extend previous findings by suggesting that associative priming has more or less equivalent effects in each hemisphere, provided the interval between prime and target is sufficiently long.  相似文献   

6.
This study set out to evaluate Cook’s (1986) topographical inhibitory model of language processing in the hemispheres. The model employs the neurophysiological mechanism of homotopic callosal inhibition to explain recent findings which suggest that the left hemisphere processes denotative meaning, while the right hemisphere specializes in connotative meaning. Specific predictions in relation to lateralized priming phenomena were derived from the model. The first experiment tested the prediction that word repetition and denotative priming would facilitate responses to right visual field targets, while connotative priming would favour the left visual field. None of these predictions were confirmed. A second experiment modified in a number of ways, provided a more extensive test of the predictions but produced essentially the same result. It was concluded that no evidence could be obtained to support the topographical inhibitory model. Instead, the results extend previous findings by suggesting that associative priming has more or less equivalent effects in each hemisphere, provided the interval between prime and target is sufficiently long.  相似文献   

7.
Coney J 《Brain and language》2002,80(2):130-141
Coney (1998) used a priming procedure to obtain evidence that the left and right hemispheres contributed equally to lexical processing of concrete nouns in a continuous reading task. In that study, however, there was no direct validation of the involvement of the right hemisphere in the task, and the possibility of left hemisphere processing of left visual field target stimuli could not be ruled out. The present study was designed to obtain validating evidence by using abstract and concrete noun primes in a similar reading task on the assumption that if the right hemisphere was contributing to the task there would be demonstrable differences between the visual fields in processing targets primed by abstract nouns. The results supported this expectation. While concrete targets projected to each visual field were primed by concrete nouns, there was significant priming by abstract nouns only in respect of targets presented to the right visual field. It is argued that this finding supports the involvement of the right hemisphere in continuous reading and further delimits the scope of its contribution to this process. Somewhat unexpectedly, the results also revealed that absolute response times were faster to left visual field targets when they were preceded by abstract nouns, even when there was no semantic relationship between the two words. It was suggested that this effect derives from the inability of the right hemisphere to process abstract nouns in that the failure of abstract nouns to engage lexical processing mechanisms leaves the right hemisphere relatively unencumbered when required to process a subsequent target.  相似文献   

8.
We investigated hemispheric differences and inter-hemispheric transfer of facilitation in automatic semantic priming, using prime-target pairs composed of words of the same category but not associated (e.g. skirt-glove), and a blank-target baseline condition. Reaction time and accuracy were measured at short (300 ms) intervals between prime and target onsets, using a go/no-go task to discriminate between word or non-word targets. Reaction times were facilitated more for target words presented in the right visual field (RVF) compared to the left visual field (LVF), and targets presented in RVF were primed in both visual fields, whereas targets presented in LVF were primed by primes in the LVF only. These results suggest that both hemispheres are capable of automatic priming at very short stimulus onset asymmetries (SOA), but cross-hemisphere priming occurs only in the left hemisphere.  相似文献   

9.
A divided visual field, priming paradigm was used to observe how adults who have a history of developmental language disorder (DLD) access lexically ambiguous words. The results show that sustained semantic access to subordinate word meanings (such as BANK-RIVER), which is seen in control subjects, is disrupted in the right cerebral hemisphere for this special population of readers. In the left hemisphere, only the most dominant meaning of the ambiguous word shows sustained priming in both controls and DLD participants. Therefore, for the DLD readers the subordinate meanings of words are not primed in either hemisphere and, thus, may not be available during online processing and integration of discourse. This right hemisphere lexical access deficit might contribute to the language comprehension difficulties exhibited by adult readers with a history of DLD.  相似文献   

10.
语义距离半球效应的ERP研究   总被引:1,自引:0,他引:1  
以通过视觉通路呈现的汉语双字词为实验材料,操纵启动词与目标词的语义距离。在词汇决定实验中记录ERP,发现:(1)除N300外,P240亦对语义距离敏感,它可能是一种与语义加工有关的新的ERP成分;(2)P240在头皮中央偏左的部位较早出现,但在头皮右侧波幅较大;(3)N300和P240都不存在语义距离的半球效应,该结果没有证实右脑更专擅远距离语义加工的假设,表明使用汉语与使用拼音文字的脑机制存在差异。  相似文献   

11.
Hemisphere dynamics in lexical access: automatic and controlled priming   总被引:10,自引:9,他引:1  
Hemisphere differences in lexical processing may be due to asymmetry in the organization of lexical information, in procedures used to access the lexicon, or both. Six lateralized lexical decision experiments employed various types of priming to distinguish among these possibilities. In three controlled (high probability) priming experiments, prime words could be used as lexical access clues. Larger priming was obtained for orthographically similar stimuli (BEAK-BEAR) when presented to the left visual field (LVF). Controlled priming based on phonological relatedness (JUICE-MOOSE) was equally effective in either visual field (VF). Semantic similarity (INCH-YARD) produced larger priming for right visual field (RVF) stimuli. These results suggest that the hemispheres may utilize different information to achieve lexical access. Spread of activation through the lexicon was measured in complementary automatic (low probability) priming experiments. Priming was restricted to LVF stimuli for orthographically similar words, while priming for phonologically related stimuli was only obtained in the RVF. Automatic semantic priming was present bilaterally, but was larger in the LVF. These results imply hemisphere differences in lexical organization, with orthographic and semantic relationships available to the right hemisphere, and phonological and semantic relations available to the left hemisphere. Support was obtained for hemisphere asymmetries in both lexical organization and directed lexical processing.  相似文献   

12.
This study investigated right hemisphere involvement in access to phonology, using a picture-naming priming paradigm where pictures and names of common objects printed in Japanese Kana were presented in succession to the same visual field or different visual fields with a stimulus onset asynchrony of 250 msec. A naming task was used for this purpose. The result showed that, when primes and targets were presented to the same visual field, facilitation for related pairs was observed in each hemisphere, with overall naming latencies being slower in the right hemisphere than in the left hemisphere. This result indicates that the prior access to phonology for a picture in the right hemisphere facilitates phonological activation of a word that names the picture in this hemisphere, suggesting that the right hemisphere is involved in access to phonology. On the other hand, when primes and targets were presented to different visual fields, there was no facilitation for related pairs with inhibition for unrelated pairs, irrespective of prime and target visual fields. It is suggested that this inhibition-dominant pattern of priming may occur due to homotopic inhibition processes proposed by N. D. Cook.  相似文献   

13.
Currently little is known about how implicit processes (i.e., cognitive processes that consumers are unaware of) are utilized as consumers read metaphoric advertisements. The field of cognitive neuroscience can help marketers better understand consumers' implicit processing by examining how each cerebral hemisphere uniquely contributes during metaphoric advertisement comprehension. A right hemisphere advantage has been demonstrated during metaphoric language processing; however, it is unclear how each hemisphere of the brain processes metaphors used in advertisements. This study combines the fields of marketing and cognitive neuroscience to investigate the hemispheric processing of metaphoric advertisements. Through the use of the divided visual field paradigm, participants read metaphor, literal, or neutral slogans and responded to related target words presented to either the left visual field‐right hemisphere or the right visual field‐left hemisphere. As predicted, there was a right hemisphere advantage, compared to the left hemisphere, for metaphoric slogans. Additionally, greater facilitation was evident in the right hemisphere for literal slogans compared to metaphoric slogans. Metaphoric messages were also remembered better than literal ones. These findings provide an in‐depth account of how consumers implicitly process messages, suggesting an important role of the right hemisphere during the comprehension of both metaphoric and literal messages. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Researchers using lateralized stimuli have suggested that the left hemisphere is sensitive to sentence-level context, whereas the right hemisphere (RH) primarily processes word-level meaning. The authors investigated this message-blind RH model by measuring associative priming with event-related brain potentials (ERPs). For word pairs in isolation, associated words elicited more positive ERPs than unassociated words with similar magnitudes and onset latencies in both visual fields. Embedded in sentences, these same pairs showed large sentential context effects in both fields. Small effects of association were observed, confined to incongruous sentences after right visual hemifield presentation but present for both congruous and incongruous sentences after left visual hemifield presentation. Results do not support the message-blind RH model but do suggest hemispheric asymmetries in the use of word and sentence context during real-time processing.  相似文献   

15.
Three experiments were conducted to investigate the influence of contextual constraint on lexical ambiguity resolution in the cerebral hemispheres. A cross-modal priming variant of the divided visual field task was utilized in which subjects heard sentences containing homonyms and made lexical decisions to targets semantically related to dominant and subordinate meanings. Experiment 1 showed priming in both hemispheres of dominant meanings for homonyms embedded in neutral sentence contexts. Experiment 2 showed priming in both hemispheres of dominant and subordinate meanings for homonyms embedded in sentence contexts that biased a central semantic feature of the subordinate meaning. Experiment 3 showed priming of dominant meanings in the left hemisphere (LH), and priming of the subordinate meaning in the right hemisphere (RH) for homonyms embedded in sentences that biased a peripheral semantic feature of the subordinate meaning. These results are consistent with a context-sensitive model of language processing that incorporates differential sensitivity to semantic relationships in the cerebral hemispheres.  相似文献   

16.
Four experiments examined the role of meaning frequency (dominance) and associative strength (measured by associative norms) in the processing of ambiguous words in isolation. Participants made lexical decisions to targets words that were associates of the more frequent (dominant) or less frequent (subordinate) meaning of a homograph prime. The first two experiments investigated the role of associative strength at long SOAs (Stimulus Onset Asynchrony) (750 ms.), showing that meaning is facilitated by the targets' associative strength and not by their dominance. The last two experiments traced the role associative strength at short SOAs (250 ms), showing that the manipulation of the associative strength has no effect in the semantic priming. The conclusions are: on the one hand, semantic priming for homographs is due to associative strength manipulations at long SOAs. On the other hand, the manipulation of the associative strength has no effect when automatic processes (short SOAs) are engaged for homographs.  相似文献   

17.
RIGHT-HEMISPHERE MEMORY SUPERIORITY:   总被引:3,自引:0,他引:3  
Abstract— Six experiments explored hemispheric memory differences in a patient who had undergone complete corpus callosum resection. The right hemisphere was better able than the left to reject new events similar to originally presented materials of several types, including abstract visual forms, faces, and categorized lists of words. Although the left hemisphere is capable of mental manipulation, imagination, semantic priming, and complex language production, these functions are apparently linked to memory confusions—confusions less apparent in the more literal right hemisphere. Differences between the left and right hemispheres in memory for new schematically consistent or categorically related events may provide a source of information allowing people to distinguish between what they actually witnessed and what they only inferred.  相似文献   

18.
汉语同形歧义词歧义消解的两半球差异   总被引:1,自引:0,他引:1  
实验探讨汉语同形歧义词(homographs)歧义消解的过程及大脑两半球的差异。被试为华中科技大学96名大学生,实验采用词汇判断任务。句子语境呈现在被试的视野中央,探测词在SOA(stimulus onset asynchronism)为100毫秒或400毫秒时呈现在左视野或右视野。结果发现,(1)当SOA为100毫秒时,在左视野(右半球)上,与语境一致的同形歧义词的主要意义得到激活,与语境不一致的次要意义也有一定程度的激活。在右视野(左半球)上,只有与语境一致的同形歧义词的主要意义得到激活。(2)当SOA为400毫秒时,在左、右视野(两半球)上,与语境一致的同形歧义词的主要意义和次要意义都得到激活。结果表明,大脑左半球对汉语歧义词的歧义消解具有一定的优势,语境敏感模型可以较好地解释本实验的结果。  相似文献   

19.
It is assumed that there are hemispheric differences in the type of information available for the processing of word meanings, e.g., categorical or associative information. In the present experiment, we used a semantic priming paradigm to examine whether perceptual or conceptual properties of word meanings would be associated with the left or right hemisphere. The present experiment also examined time-course activation of these properties across the hemispheres, using short and long stimulus onset asynchronies. The results indicated that perceptual information is available only in the right hemisphere at an early rather than a late stage of target processing, while conceptual information is available in both hemispheres at both early and later stages of target processing. It is suggested that the imagery system in the right hemisphere may contribute to the perceptual priming observed in this hemisphere.  相似文献   

20.
The authors investigated affective semantic priming using a lexical decision task with 4 affective categories of related word pairs: neutral, happy, fearful, and sad. Results demonstrated a striking and reliable effect of affective category on semantic priming. Neutral and happy prime-targets yielded significant semantic priming. Fearful pairs showed no or modest priming facilitation, and sad primes slowed reactions to sad targets. A further experiment established that affective primes do not have generalized facilitatory-inhibitory effects. The results are interpreted as showing that the associative mechanisms that support semantic priming for neutral words are also shared by happy valence words but not for negative valence words. This may reflect increased vigilance necessary in adverse contexts or suggest that the associative mechanisms that bind negative valence words are distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号