首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lightness constancy requires that a surface retain its lightness not only when the illumination is changed but also when the surface is moved from one background to another. Occlusion of one surface by another frequently results in a retinal juxtaposition of patches under different illuminations. At such edges, retinal luminance ratios can be much higher than in scenes with a single illumination. We demonstrate that such retinal adjacencies can produce failures of lightness constancy. We argue that they are responsible for departures from perfect lightness constancy in two prior experiments that examined the effects of depth relations on lightness constancy.  相似文献   

2.
Anchoring theory (Gilchrist et al, 1999 Psychological Review 106 795-834) predicts a wide range of lightness errors, including failures of constancy in multi-illumination scenes and a long list of well-known lightness illusions seen under homogeneous illumination. Lightness values are computed both locally and globally and then averaged together. Local values are computed within a given region of homogeneous illumination. Thus, for an object that extends through two different illumination levels, anchoring theory produces two values, one for the patch in brighter illumination and one for the patch in dimmer illumination. Observers can give matches for these patches separately, but they can also give a single match for the whole object. Anchoring theory in its current form is unable to predict these object matches. We report eight experiments in which we studied the relationship between patch matches and object matches. The results show that the object match represents a compromise between the match for the patch in the field of highest illumination and the patch in the largest field of illumination. These two principles are parallel to the rules found for anchoring lightness: highest luminance rule and area rule.  相似文献   

3.
Werner A 《Perception》2006,35(9):1171-1184
In real scenes, surfaces in different depth planes often differ in the luminance and chromatic content of their illumination. Scene segmentation is therefore an important issue when considering the compensation of illumination changes in our visual perception (lightness and colour constancy). Chromatic adaptation is an important sensory component of colour constancy and has been shown to be linked to the two-dimensional spatial structure of a scene (Werner, 2003 Vision Research 43 1611 - 1623). Here, the question is posed whether this cooperation also extends to the organisation of a scene in depth. The influence of depth on colour constancy was tested by introducing stereo disparity, whereby the test patch and background were perceived in either the same or one of five different depth planes (1.9-57 min of arc). There were no additional cues to depth such as shadows or specular highlights. For consistent illumination changes, colour constancy was reduced when the test patch and background were separated in depth, indicating a reduction of contextual influences. An interaction was found between the influences of stereo depth and spatial frequency on colour constancy. In the case of an inconsistent illumination change, colour constancy was reduced if the test patch and background were in the same depth plane (2-D condition), but not if they were separated in depth (3-D condition). Furthermore, colour constancy was slightly better in the 3-D inconsistent condition than in the 2-D inconsistent condition. It is concluded that depth segmentation supports colour constancy in scenes with inconsistent illumination changes. Processes of depth segmentation are implemented at an early sensory stage of colour constancy, and they define visual regions within which the effects of illuminant changes are discounted for separately. The results support recent models that posit such implementation of scene segmentation in colour constancy.  相似文献   

4.
Logvinenko AD  Kane J 《Perception》2003,32(3):263-268
A display with a luminance gradient was shown to induce a strong lightness illusion (Logvinenko, 1999 Perception 28 803-816). However, a 3-D cardboard model of this display was found to produce a much weaker illusion (less than half that in the pictorial version) despite the fact that its retinal image is practically the same. This is in line with the hypothesis that simultaneous lightness contrast is solely a phenomenon of pictorial perception (Logvinenko et al, 2002 Perception 31 73-82). The residual lightness illusion in the 3-D model can be accounted for by the fact that this model is a hybrid display. Specifically, while it is a real object, a pictorial representation (of the illumination gradient) is superimposed on it. Thus, lightness in the 3-D display is a compromise between two opposite tendencies: the background-independent lightness constancy and the lightness illusory shift induced by the luminance gradient.  相似文献   

5.
Lightness induction, or simultaneous lightness contrast (we prefer the term lightness induction since contrast has another meaning in the visual literature, namely, the relative intensity of the stimulation), was studied for a 3-D object (Adelson's wall of blocks) and its 2-D pictorial representations. A statistically significant lightness induction effect was found only for the pictures but not for the 3-D object. No lightness induction effect was found for the 3-D object under either monocular or binocular viewing conditions.  相似文献   

6.
Shape constancy is referred to as the tendency for the perceived shape of an object to remain unchanged even under changed viewing and illumination conditions. We investigated, in two experiments, whether shape constancy would hold for images of 3-D solid objects defined by shading only, whose renderings differed in terms of surface material type (bi-directional reflectance distribution functions), light field, light direction, shape, and specularity. Observers were presented with the image of a sphere or an ellipsoid and required to set perceived orientation and cross-section profile on designated points of the image. Results showed that shape judgments varied with all the aforementioned variables except specularity. Shape estimates were more precise with specular than asperity scattering surfaces, collimated than hemispherical diffuse lighting conditions, lower than higher elevations, spherical than ellipsoidal shapes, but not different between surfaces having differing specularity. These results suggest that shape judgments are made largely on the basis of the overall intensity distribution of shading, and that the portions of intensity distribution that are due to nonstructural variables such as surface material type or light field are not excluded in the process of shape estimation, as if being due to structural components. It is concluded that little constancy is expected in the perception of shape from shading.  相似文献   

7.
Bloj MG  Hurlbert AC 《Perception》2002,31(2):233-246
The traditional achromatic Mach card effect is an example of lightness inconstancy and a demonstration of how shape and lightness perception interact. We present a quantitative study of this phenomenon and explore the conditions under which it occurs. The results demonstrate that observers show lightness constancy only when sufficient information is available about the light-source position, and the perceptual task required of them is surface identification rather than direct colour-appearance matching. An analysis and comparison of these results with the chromatic Mach card effect (Bloj et al 1999 Nature 402 877-879) demonstrate that the luminance effects of mutual illumination do not account for the change in lightness perception in the traditional Mach card.  相似文献   

8.
9.
The term simultaneous lightness constancy describes the capacity of the visual system to perceive equal reflecting surfaces as having the same lightness despite lying in different illumination fields. In some cases, however, a lightness constancy failure occurs; that is, equal reflecting surfaces appear different in lightness when differently illuminated. An open question is whether the luminance profile of the illumination edges affects simultaneous lightness constancy even when the ratio invariance property of the illumination edges is preserved. To explore this issue, we ran two experiments by using bipartite illumination displays. Both the luminance profile of an illumination edge and the luminance ratio amplitude between the illumination fields were manipulated. Results revealed that the simultaneous lightness constancy increases when the luminance profile of the illumination edge is gradual (rather than sharp) and homogeneous (rather than inhomogeneous), whereas it decreases when the luminance ratio between the illumination fields is enlarged. The results are interpreted according to the layer decomposition schema, stating that the visual system splits the luminance into perceived lightness and apparent illumination components. We suggest that illumination edges having gradual and homogeneous luminance profiles facilitate the luminance decomposition process, whereas wide luminance ratios impede it.  相似文献   

10.
A review of the field of lightness perception from Helmholtz to the present shows the most adequate theories of lightness perception to be the intrinsic image models. Nevertheless, these models fail on 2 important counts: They contain no anchoring rule, and they fail to account for the pattern of errors in surface lightness. Recent work on both the anchoring problem and the problem of errors has produced a new model of lightness perception, one that is qualitatively different from the intrinsic image models. The new model, which is based on a combination of local and global anchoring of lightness values, appears to provide an unprecedented account of a wide range of empirical results, both classical and recent, especially the pattern of errors. It provides a unified account of both illumination-dependent failures of constancy and background-dependent failures of constancy, resolving a number of long-standing puzzles.  相似文献   

11.
In order to assess the influence of illumination direction on shape constancy, we studied the pictorial relief of computer images of globular 3-D objects. We used two globally convex objects, one with a furrow and one with a dimple. Observers adjusted local surface attitude probes at 200-250 different locations in the image such that they seemed to lie on the pictorial surface. We manipulated the viewing direction and the illumination direction in a 2 x 2 orthogonal design. Viewing directions were chosen such that the image contained only a few, or no, contour singularities. Changes in the illumination direction were found to induce systematic changes in the settings for both viewing directions. Effects were especially pronounced for images that had no contour singularities. The results showed that a change in the illumination direction can change the local shape of the pictorial relief in addition to the bas-relief ambiguities of scaling and shearing in depth. We found that concavities in the pictorial relief are associated with the darker areas in the image. The deviation from shape constancy cannot be explained by bas-relief ambiguity since the required transformation between the shapes is nonlinear.  相似文献   

12.
It has been shown that lightness constancy depends on the articulation of the visual field (Agostini & Galmonte, 1999). However, among researchers there is little agreement about the meaning of "articulation." Beyond the terminological heterogeneity, an important issue remains: What factors are relevant for the stability of surface color perception? Using stimuli with two fields of illumination, we explore this issue in three experiments. In Experiment 1, we manipulated the number of luminances, the number of reflectances, and the number of surfaces and their spatial relationships; in Experiment 2, we manipulated the luminance range; finally, in Experiment 3 we varied the number of surfaces crossed by the illumination edge. We found that there are two relevant factors in optimizing lightness constancy: (1) the lowest luminance in shadow and (2) the co-presence of patches of equal reflectance in both fields of illumination. The latter effect is larger if these patches strongly belong to each other. We interpret these findings within the albedo hypothesis.  相似文献   

13.
In this paper, we analyze and test three theories of 3-D shape perception: (1) Helmholtzian theory, which assumes that perception of the shape of an object involves reconstructing Euclidean structure of the object (up to size scaling) from the object’s retinal image after taking into account the object’s orientation relative to the observer, (2) Gibsonian theory, which assumes that shape perception involves invariants (projective or affine) computed directly from the object’s retinal image, and (3) perspective invariants theory, which assumes that shape perception involves a new kind of invariants of perspective transformation. Predictions of these three theories were tested in four experiments. In the first experiment, we showed that reliable discrimination between a perspective and nonperspective image of a random polygon is possible even when information only about the contour of the image is present. In the second experiment, we showed that discrimination performance did not benefit from the presence of a textured surface, providing information about the 3-D orientation of the polygon, and that the subjects could not reliably discriminate between the 3-D orientation of the textured surface and that of a shape. In the third experiment, we compared discrimination for solid shapes that either had flat contours (cuboids) or did not have visible flat contours (cylinders). The discrimination was very reliable in the case of cuboids but not in the case of cylinders. In the fourth experiment, we tested the effectiveness of planar motion in perception of distances and showed that the discrimination threshold was large and similar to thresholds when other cues to 3-D orientation were used. All these results support perspective invariants as a model of 3-D shape perception.  相似文献   

14.
Colour constancy was investigated by using a series of 10 simultaneously presented surface colours ranging in small steps from green through gray to red-purple. Goldfish were trained to select one medium test field when the entire setup was illuminated with white light. In the tests, either red or green illumination was used. Colour constancy, as inferred from the choice behaviour, was perfect under green illumination when the test fields were presented on a gray or a white background, but imperfect on a black background. Under red illumination and a white background, however, colour constancy was overcompensated. Here, a colour contrast effect was observed. The influence of background lightness was also found when the surround was restricted to a narrow annulus of 4-11 mm width (test field diameter: 14 mm). By applying colour metrics it could be shown that the von Kries coefficient law can describe the overall effect of colour constancy. For an explanation of the effect of surround size and lightness, lateral inhibitory interactions have to be assumed in addition, which are also responsible for simultaneous colour contrast. Very similar results were obtained in experiments with the same colours in human subjects. They had to name the test field appearing 'neutral' under the different illumination and surround conditions, as tested in the goldfish experiment.  相似文献   

15.
We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and later recalling it under a new illumination) was better for higher WM individuals than for lower WM individuals. Moreover, the magnitude of this WM difference depended on how much contextual information was available in the scene, which typically improves color constancy. By contrast, simple color memory, measured by viewing and recalling a colored surface under the same illumination, showed no significant relation to WM. This study reveals a relation between WM and a low-level perceptual process not previously thought to operate within the confines of attentional control, and it provides a first account of the individual differences in color constancy known about for decades.  相似文献   

16.
Can visual search be based on preconstancy representations of the scene--that is, ones in which accidental characteristics of the scene, such as shadows, point of view, and distance, have not yet been discounted? This question was addressed within the specific context of lightness constancy, the phenomenon that surface lightness is perceived as relatively unchanged despite changes in illumination conditions. Three experiments yielded evidence of preconstancy influence on visual search. This was true even when the preconstancy information that seemed to influence search was unavailable at a reportable level. The results suggest that visual search processes can be engaged before the processing that leads to the experienced perception of the scene is complete.  相似文献   

17.
Prior experiments on shape constancy from novel views are inconclusive: Some show that shapes of objects can be recognized reliably from novel views, whereas others show just the opposite. Our analysis of prior results suggests that shape constancy from novel views is reliable when the object has properties that constrain its shape: The object has volumetric primitives, it has surfaces, it is symmetrical, it is composed of geons, its contours are planar, and its images provide useful topological information about its three-dimensional structure. To test the role of some of these constraints, we performed a set of experiments. Solid shapes (polyhedra) were shown on a computer monitor by means of kinetic depth effect. Experiment 1 showed that shape constancy can be reliably achieved when a polyhedron is represented by its contours (most of the constraints are present), but not when it is represented by vertices or by a polygonal line connecting the vertices in a random order (all the constraints are absent). Experiments 2 and 3 tested the role of individual constraints. Results of these experiments show that shape constancy from novel views is reliable when the object has planar contours and when the shapes of the contours together with topological information about the relations among the contours constrain the possible interpretations of the shape. Symmetry of the object and the topological stability of its image also contribute to shape constancy.  相似文献   

18.
Logvinenko AD 《Perception》1999,28(7):803-816
Lightness induction is the classical visual phenomenon whereby the lightness of an object is shown to depend on its immediate surround. Despite the long history of its study, lightness induction has not yet been coherently and satisfactorily explained in all its variety. The two main theories that compete to explain it descend (i) from H von Helmholtz, who believed that lightness induction originates from some central mechanisms that take into account the whole viewing situation, with particular stress upon the apparent illumination of the object; and (ii) E Hering who argued in favour of more peripheral sensory mechanisms based on local luminance contrast. The balance between these theories has recently been shifted towards Helmholtz's position by E H Adelson who has provided additional evidence that lightness induction depends on perceptual interpretation and, particularly, on apparent transparency. I challenge Adelson's conclusions by introducing modified versions of his tile pattern that use luminance gradients. In the first of these new demonstrations there is a strong lightness induction even though no apparent transparency is experienced. In the second there is a clear impression of transparent strips, yet no lightness induction is present. And the third shows that breaking up the Adelson tile pattern, while it affects neither the impression of transparency nor the type of grey-level junctions, makes the lightness-induction effect vanish. This implies that Adelson's illusion can be accounted for by neither local contrast, nor the apparent transparency, nor the type of grey-level junctions. Presented here is an alternative look at lightness induction as a phenomenon of the pictorial (as contrasted to natural) vision, which rests on the lightness-shadow invariance, much as Gregory's 'inappropriate constancy scaling' theory of geometrical illusions rests on the apparent size-distance invariance.  相似文献   

19.
Soranzo A  Agostini T 《Perception》2006,35(2):185-192
The relation between perceptual belongingness and lightness perception has historically been studied in the contrast domain (Benary, 1924 Psychologische Forschung 5 131 - 142). However, scientists have shown that two equal grey patches may differ in lightness when belonging to different reflecting surfaces. We extend this investigation to the constancy domain. In a CRT simulation of a bipartite field of illumination, we manipulated the arrangement of twelve patches: six squares and six diamonds. Patches of the same shape could be placed: (i) all within the same illumination field; or (ii) forming a row across the illumination fields. Furthermore, we manipulated proximity between the innermost patches and the illumination edge. The patches could be (i) touching (forming an X-junction); or (ii) not touching (not forming an X-junction). Observers were asked to perform a lightness match between two additional patches, one illuminated and the other in shadow. We found better lightness constancy when the patches of the same shape formed a row across the fields, with no effect of X-junctions. Since lightness constancy is improved by strengthening the belongingness across the illumination fields, we conclude that belongingness might help the visual system to aggregate the differently illuminated surfaces, and facilitate the scission process.  相似文献   

20.
Consistency effects between objects in scenes   总被引:1,自引:0,他引:1  
How does context influence the perception of objects in scenes? Objects appear in a given setting with surrounding objects. Do objects in scenes exert contextual influences on each other? Do these influences interact with background consistency? In three experiments, we investigated the role of object-to-object context on object and scene perception. Objects (Experiments 1 and 3) and backgrounds (Experiment 2) were reported more accurately when the objects and their settings were consistent than when they were inconsistent, regardless of the number of foreground objects. In Experiment 3, related objects (from the same setting) were reported more accurately than were unrelated objects (from different settings), independently of consistency with the background. Consistent with an interactive model of scene processing, both object-to-object context and object-background context affect object perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号