首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
An experiment was conducted to examine the control of force and timing in bimanual finger tapping. Participants were trained to produce both unimanual (left or right hand) and bimanual finger-tapping sequences with a peak force of 200 g and an intertap interval (ITI) of 400 ms. During practice, visual force feedback was provided pertaining to the hand performing the unimanual tapping sequences and to either the dominant or the nondominant hand in the bimanual tapping sequences. After practice, the participants produced the learned unimanual and bimanual tapping sequences in the absence of feedback. In those trials the force produced by the dominant (right) hand was significantly larger than that produced by the nondominant (left) hand, in the absence of a significant difference between the ITIs produced by both hands. Furthermore, after unilateral feedback had been provided of the force produced by the nondominant hand, the force output of the dominant hand was significantly more variable than that of the nondominant hand. In contrast, after feedback had been provided of the force produced by the dominant hand, the variability of the force outputs of the two hands did not differ significantly. These results were discussed in the light of both neurophysiological and anatomical findings, and were interpreted to imply that the control of timing (in bimanual tasks) may be more tightly coupled in the motor system than the control of force.  相似文献   

2.
This study investigated the influence of attentional and motor demands on motor overflow in 17 healthy young (18-35 years) and 17 older adults (60-80 years). Participants performed a finger pressing task by exerting either 33% or 66% of their maximal force output using their dominant or nondominant hand. Overflow was concurrently recorded in the passive hand. Attention was manipulated via a tactile stimulus presented to one or both hands for certain trials. Results showed that older adults exhibited greater overflow than young adults and that the effect of target force was exacerbated in older adults. Further, only older adult overflow was increased when tactile stimulation was directed to one or both hands. Increased overflow in older adults may result from bilateral cortical activation that is influenced by increased task demands. To perform comparatively to younger adults, older adults may compensate for age-related brain changes by recruiting an increased cortical network.  相似文献   

3.
This study investigated the influence of attentional and motor demands on motor overflow in 17 healthy young (18–35 years) and 17 older adults (60–80 years). Participants performed a finger pressing task by exerting either 33% or 66% of their maximal force output using their dominant or nondominant hand. Overflow was concurrently recorded in the passive hand. Attention was manipulated via a tactile stimulus presented to one or both hands for certain trials. Results showed that older adults exhibited greater overflow than young adults and that the effect of target force was exacerbated in older adults. Further, only older adult overflow was increased when tactile stimulation was directed to one or both hands. Increased overflow in older adults may result from bilateral cortical activation that is influenced by increased task demands. To perform comparatively to younger adults, older adults may compensate for age-related brain changes by recruiting an increased cortical network.  相似文献   

4.
Three experiments were performed to examine the relative constancy of the exponent in the psychophysical power law under varying motivating conditions. The method of magnitude estimation was used to obtain judgments of apparent tactual roughness or of apparent area size of squares. Patterns of the qualitative observations of the three Es and of the various exponents for the six groups of Ss indicated that neutral instructions and “ego-orienting” instructions, which were perceived as unbelievable coming from an equal fellow student, both yielded exponents identical to those reported in the literature. Believable ego-orienting instructions given by an E of clearly perceived higher social status produced a statistically significantly lower exponent than neutral. Intermediate conditions, wherein Ss apparently disbelieved both types of instructions, but assumed that the superior-status E was “analyzing” them, yielded exponents of intermediate size. Results and supplementary trend analyses are discussed as possible, highly sensitive indicators of motivational impacts on sensory judgments.  相似文献   

5.
The authors aimed to calculate and compare cortical relay time (CRT) between intrinsic hand muscles and between homonymous muscles of dominant and nondominant hands. The participants comprised 22 healthy volunteers. The CRT for long-latency reflexes (LLRs) was calculated by subtracting the peak latency of somatosensory evoked potentials of component N20 and the onset latency of motor evoked potentials from the onset latency of LLRs. CRT was significantly shorter for the first dorsal interosseous muscle than for the abductor pollicis brevis muscle, regardless of hand dominance. CRT for the abductor pollicis brevis muscle was significantly shorter in the dominant hand than in the nondominant hand. Evaluation of CRT for intrinsic muscles might be beneficial in the understanding of individuated finger functions.  相似文献   

6.
Right- and left-handers implicitly associate positive ideas like "goodness" and "honesty" more strongly with their dominant side of space, the side on which they can act more fluently, and negative ideas more strongly with their nondominant side. Here we show that right-handers' tendency to associate "good" with "right" and "bad" with "left" can be reversed as a result of both long- and short-term changes in motor fluency. Among patients who were right-handed prior to unilateral stroke, those with disabled left hands associated "good" with "right," but those with disabled right hands associated "good" with "left," as natural left-handers do. A similar pattern was found in healthy right-handers whose right or left hand was temporarily handicapped in the laboratory. Even a few minutes of acting more fluently with the left hand can change right-handers' implicit associations between space and emotional valence, causing a reversal of their usual judgments. Motor experience plays a causal role in shaping abstract thought.  相似文献   

7.
After adaptation to a fixed temporal delay between actions and their sensory consequences, stimuli delivered during the delay are perceived to occur prior to actions. Temporal judgments are also influenced by the sensation of agency (experience of causing our own actions and their sensory consequences). Sensory consequences of voluntary actions are perceived to occur earlier in time than those of involuntary actions. However, it is unclear whether temporal order illusions influence the sensation of agency. Thus, we tested how the illusionary reversal of motor actions and sound events affect the sensation of agency. We observed an absence of the sensation of agency in the auditory modality in a condition in which sounds were falsely perceived as preceding motor acts relative to the perceived temporal order in the control condition. This finding suggests a strong association between the sensation of agency and the temporal order perception of actions and their consequences.  相似文献   

8.
Perceived finger span—the perceived spatial separation between the tip of the thumb and the tip of the index finger—was measured by using cross-modal matching to line length. In the first experiment, subjects adjusted finger span to match the length of line segments presented on a video monitor, and conversely, with both hands. Subjects also made estimates of finger span in physical units (“dead reckoning”). Finger spans were measured by using infrared LEDs mounted on the tip of the thumb and the finger tip, so the hand made no contact with any object during the experiment. Unlike in previous studies, the results suggest that perceived finger span is proportional to line length and slightly shorter than the actual span, provided that corrections are made for regression bias. The effect of finger contact was assessed in a second experiment by matching line length both to free span and to spans constrained by the pinching of blocks in the same session. The matching function when subjects were pinching blocks was accelerating, consistent with previous reports. In contrast, matched line length was a decelerating function of free span. The exponent of the free span matching function in the second experiment was slightly smaller than in the first experiment, probably due to uncorrected matching biases in the second experiment.  相似文献   

9.

It has been suggested that judgments about the temporal–spatial order of successive tactile stimuli depend on the perceived direction of apparent motion between them. Here we manipulated tactile apparent-motion percepts by presenting a brief, task-irrelevant auditory stimulus temporally in-between pairs of tactile stimuli. The tactile stimuli were applied one to each hand, with varying stimulus onset asynchronies (SOAs). Participants reported the location of the first stimulus (temporal order judgments: TOJs) while adopting both crossed and uncrossed hand postures, so we could scrutinize skin-based, anatomical, and external reference frames. With crossed hands, the sound improved TOJ performance at short (≤300 ms) and at long (>300 ms) SOAs. When the hands were uncrossed, the sound induced a decrease in TOJ performance, but only at short SOAs. A second experiment confirmed that the auditory stimulus indeed modulated tactile apparent motion perception under these conditions. Perceived apparent motion directions were more ambiguous with crossed than with uncrossed hands, probably indicating competing spatial codes in the crossed posture. However, irrespective of posture, the additional sound tended to impair potentially anatomically coded motion direction discrimination at a short SOA of 80 ms, but it significantly enhanced externally coded apparent motion perception at a long SOA of 500 ms. Anatomically coded motion signals imply incorrect TOJ responses with crossed hands, but correct responses when the hands are uncrossed; externally coded motion signals always point toward the correct TOJ response. Thus, taken together, these results suggest that apparent-motion signals are likely taken into account when tactile temporal–spatial information is reconstructed.

  相似文献   

10.
11.
Hemispheric specialization for motor control influences how individuals perform and adapt to goal-directed movements. In contrast to adaptation, motor skill learning involves a process wherein one learns to synthesize novel movement capabilities in absence of perturbation such that they are performed with greater accuracy, consistency and efficiency. Here, we investigated manual asymmetry in acquisition and retention of a complex motor skill that requires speed and accuracy for optimal performance in right-handed and left-handed individuals. We further determined if degree of handedness influences motor skill learning. Ten right-handed (RH) and 10 left-handed (LH) adults practiced two distinct motor skills with their dominant or nondominant arms during separate sessions two–four weeks apart. Learning was quantified by changes in the speed–accuracy tradeoff function measured at baseline and one-day retention. Manual asymmetry was evident in the RH group but not the LH group. RH group demonstrated significantly greater skill improvement for their dominant-right hand than their nondominant-left hand. In contrast, for the LH group, both dominant and nondominant hands demonstrated comparable learning. Less strongly-LH individuals (lower EHI scores) exhibited more learning of their dominant hand. These results suggest that while hemispheric specialization influences motor skill learning, these effects may be influenced by handedness.  相似文献   

12.
Previous psychophysical studies have shown that an object, lifted with a precision grip, is perceived as being heavier when its surface is smooth than when it is rough. Three experiments were conducted to assess whether this surface-weight illusion increases with object weight, as a simple fusion model suggests. Experiment 1 verified that grip force increases more steeply with object weight for smooth objects than for rough ones. In Experiment 2, subjects rated the weight of smooth and rough objects. Smooth objects were judged to be heavier than rough ones; however, this effect did not increase with object weight. Experiment 3 employed a different psychophysical method and replicated this additive effect, which argues strongly against the simple fusion model. The whole pattern of results is consistent with a weighted fusion model in which the sensation of grip force contributes only partially to the perceived heaviness of a lifted object.  相似文献   

13.
Previous psychophysical studies have shown that an object, lifted with a precision grip, is perceived as being heavier when its surface is smooth than when it is rough. Three experiments were conducted to assess whether this surface-weight illusion increases with object weight, as a simple fusion model suggests. Experiment 1 verified that grip force increases more steeply with object weight for smooth objects than for rough ones. In Experiment 2, subjects rated the weight of smooth and rough objects. Smooth objects were judged to be heavier than rough ones; however, this effect did not increase with object weight. Experiment 3 employed a different psychophysical method and replicated this additive effect, which argues strongly against the simple fusion model. The whole pattern of results is consistent with a weighted fusion model in which the sensation of grip force contributes only partially to the perceived heaviness of a lifted object.  相似文献   

14.
The concepts of “good” and “bad” are associated with right and left space. Individuals tend to associate good things with the side of their dominant hand, where they experience greater motor fluency, and bad things with their nondominant side. This mapping has been shown to be flexible: Changing the relative fluency of the hands, or even observing a change in someone else's motor fluency, results in a reversal of the conceptual mapping, such that good things become associated with the side of the nondominant hand. Yet, based on prior studies, it is unclear whether space–valence associations were determined by the experience of fluent versus disfluent actions, or by the mere expectation of fluency. Here, we tested the role of expected fluency by removing motor execution and perceptual feedback altogether. Participants were asked to imagine themselves performing a psychomotor task with one of their hands impaired, after which their implicit space–valence mapping was measured. After imagining that their right hand was impaired, right‐handed participants showed the “good is left” association typical of left‐handers. Motor imagery can change people's implicit associations between space and emotional valence. Although asymmetric motor experience may be necessary to establish body‐specific associations between space and valence initially, neither motoric nor perceptual experience is needed to change these associations subsequently. The mere expectation of fluent versus disfluenct actions can drive fluency‐based effects on people's implicit spatialization of “good” and “bad.” These results suggest a reconsideration of the mechanisms and boundary conditions of fluency effects.  相似文献   

15.
该研究采用功能磁共振成像技术,考察不同条件下进行工具认知判断时手部姿势对认知判断的影响及动作模拟的神经机制。实验发现:手部姿势存在显著的主效应,冲突手部姿势条件下反应时最慢,且冲突手部姿势条件下与不冲突手部姿势条件下、自然状态条件下反应时存在显著差异,自然状态条件与不冲突手部姿势条件下反应时不存在显著差异。另外,f MRI成像结果发现,额中回、额下回、顶下小叶以及辅助运动区在自然状态下有显著激活,表明个体在进行认知判断过程中有动作模拟过程;海马结构、扣带回及楔前叶等与记忆有关的脑区有显著激活,表明身体经验在认知过程的作用。总的研究表明,不同的手部姿势状态对认知判断有不同影响,冲突手部姿势会对动作模拟产生干扰作用,手部动作模拟的神经机制主要涉及镜像神经元区,且在认知判断时存在具身效应。  相似文献   

16.
In this paper, we show that, when lifting an object using a precision grip with the distal pads of the thumb and index finger at its sides, the perceived weight depends on the object’s surface texture. The smoother the surface texture, the greater the perceived weight. We suggest that a smoother object is judged to be heavier because the grip force, normal to the surface, required to prevent it from slipping is greater. The possibility of there being an influence of surface texture per se is excluded by a second experiment that employed a variant of the precision grip in which the thumb supports the weight of the object from underneath. With the grip oriented in this way, there is no need to match grip force to surface texture and, under these conditions, there is no effect of surface texture on weight perception. In the first two experiments, the test and comparison weights were lifted successively by the same hand. In a third experiment, the effect of surface texture was replicated for sequential lifts made with separate hands. Thus, the effect is not restricted to comparisons made with the same hand.  相似文献   

17.
Summary Subjects performed a timed-response task in which they attempted to synchronize a rapid flexion of the index finger of their preferred hand with the last of a train of four regularly spaced acoustic clicks. The task was used to stabilize the execution time of a simple voluntary response in order to facilitate psychophysical judgments about the subjects' perception of having responded and of having intended to respond. In the first experiment, male subjects (N = 6) adjusted the appearance time of a reference stimulus (a brief percutaneous pulse to the responding finger) until it appeared to be simultaneous with their perception of having made the response. All subjects adjusted the reference stimulus to appear after response onset during the latter half of the force impulse. This finding suggests that the perception of having responded is based on peripheral feedback from the response. In the second experiment, male subjects (N = 6) performed the same motor task, but adjusted the time of the reference stimulus so that it appeared to be simultaneous with their intention to respond. Two subjects were not able to do the task successfully; the remaining four subjects adjusted the reference stimulus to appear from 101 to 145 ms before response onset. This finding suggests that the intention to respond is perceptually separable from the response itself and occurs at a measurable time before response onset.  相似文献   

18.
An integrative approach emphasizing both psychological and physiological components in force perception has started to emerge in motor psychophysics. In this experiment, the relation between isometric force (produced by the elbow flexors~ and perceived force was examined over a range of forces maintained until maximal endurance. A contralateral-limb matching procedure in which subjects estimated the force of a sustained, constant force contraction by contracting their unfatigued arm at regular intervals was employed. A linear increase in perceived force was observed during the fatiguing contractions, the rate of which depended on the level of force exerted. The sensation of force at maximal endurance was also found to vary with the force exerted. Based on the similarity between these results and those derived from electromyographic studies, we propose that observers use the efferent input to the muscle in preference to its afferent responses in judging the force of muscular contractions.  相似文献   

19.
In each of three experiments, 24 students judged the accentedness present in the speech of eight Spanish-English bilinguals.Ss gave magnitude estimations and also squeezed a hand dynamometer to indicate the amount of accentedness in the reading of an English passage by each of the speakers. There was significant agreement amongSs regarding the speech samples with each scaling method, and interscale agreement was good. Power functions fitted to the data had exponents falling in the range expected from earlier psychophysical studies. Scale values correlated significantly with the frequency of accented pronunciations by the speakers as judged by two independent judges. The use of these scaling methods for future research on linguistic features of accent and on the relation between accent and language attitudes is discussed.  相似文献   

20.
The methods of magnitude estimation and magnitude production were employed to investigate the effects of stimulus frequency on supra-threshold lingual-vibrotactile sensation-magnitude functions. The method of magnitude estimation was used to obtain numerical judgments of sensation magnitudes for nine stimulus intensities presented to the anterior dorsum of the tongue. The vibrotactile stimulus frequencies employed for 10 subjects (M age = 21.1 yr.) were 100, 250, and 400 Hz. The numerical responses obtained during the magnitude-estimation task were in turn used as stimuli to obtain magnitude-production values for the same three vibrotactile stimulus frequencies. The results appeared to present two suggestions. First, the effects of stimulus frequency on lingual vibrotactile-sensation magnitudes may be dependent on the psychophysical method used in any particular experiment. Second, lingual-vibrotactile magnitude-estimation scales may demonstrate asymptotic growth functions above about 25 dB sensation level. The limitation in the growth of sensation magnitude occurred for all three vibrotactile stimulus frequencies employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号