共查询到20条相似文献,搜索用时 15 毫秒
1.
Lesions of the basolateral amygdala (BLA) have long been associated with abnormalities of taste-related behaviors and with failure in a variety of taste- and odor-related learning paradigms, including taste-potentiated odor aversion, conditioned taste preference, and conditioned taste aversion. Still, the general role of the amygdala in chemosensory learning remains somewhat controversial. In particular, it has been suggested that the amygdala may not be involved in a form of chemosensory learning that has recently received a substantial amount of study-socially transmitted food preference (STFP). Here, we provide evidence for this involvement by pharmacologically inactivating the basolateral amygdala bilaterally during STFP training. The same inactivation sites that impaired taste aversion learning eliminated the normally conditioned preference for a food smelled on a conspecific's breath. Impairments of learned preference persisted even in testing sessions in which BLA was not inactivated, and learning was normal when the BLA was inactivated only during testing sessions; thus, the impairment was a true acquisition deficit. In conjunction with previous results from other paradigms, therefore, our data suggest that the amygdala is vital for learning procedures involving pairings of potent and arbitrary chemosensory stimuli. 相似文献
2.
The basolateral amygdaloid complex (BLA) and orbitofrontal cortex (OFC) share extensive reciprocal connections, and interactions
between these regions likely contribute to both mnemonic and affective processes. The present study examined the potential
differential contributions of the BLA and OFC to performance of an olfactory discrimination task that incorporates auditory
conditioned reinforcement and to expression of immediate post-shock freezing behavior. Damage to the BLA had little effect
on performance of the conditioned reinforcement task but abolished immediate post-shock freezing behavior. In contrast, damage
to OFC resulted in both a mild but significant performance decrement in the conditioned reinforcement task and a significant
attenuation of immediate post-shock freezing behavior. These findings suggest that immediate post-shock freezing behavior
is likely critically dependent upon interactions between the BLA and OFC. However, although mnemonic processes underlying
accurate performance of the conditioned reinforcement task might be supported by OFC in part, such processes are independent
of either the BLA or interactions between these two regions. 相似文献
3.
Candice M. Chavez James L. McGaugh Norman M. Weinberger 《Neurobiology of learning and memory》2009,91(4):382-392
Stress hormones released by an experience can modulate memory strength via the basolateral amygdala, which in turn acts on sites of memory storage such as the cerebral cortex [McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1–28]. Stimuli that acquire behavioral importance gain increased representation in the cortex. For example, learning shifts the tuning of neurons in the primary auditory cortex (A1) to the frequency of a conditioned stimulus (CS), and the greater the level of CS importance, the larger the area of representational gain [Weinberger, N. M. (2007). Associative representational plasticity in the auditory cortex: A synthesis of two disciplines. Learning & Memory, 14(1–2), 1–16]. The two lines of research suggest that BLA strengthening of memory might be accomplished in part by increasing the representation of an environmental stimulus. The present study investigated whether stimulation of the BLA can affect cortical memory representations. In male Sprague–Dawley rats studied under urethane general anesthesia, frequency receptive fields were obtained from A1 before and up to 75 min after the pairing of a tone with BLA stimulation (BLAstm: 100 trials, 400 ms, 100 Hz, 400 μA [±16.54]). Tone started before and continued after BLAstm. Group BLA/1.0 (n = 16) had a 1 s CS–BLAstm interval while Group BLA/1.6 (n = 5) has a 1.6 s interval. The BLA/1.0 group did develop specific tuning shifts toward and to the CS, which could change frequency tuning by as much as two octaves. Moreover, its shifts increased over time and were enduring, lasting 75 min. However, group BLA/1.6 did not develop tuning shifts, indicating that precise CS–BLAstm timing is important in the anesthetized animal. Further, training in the BLA/1.0 paradigm but stimulating outside of the BLA did not produce tuning shifts. These findings demonstrate that the BLA is capable of exerting highly specific, enduring, learning-related modifications of stimulus representation in the cerebral cortex. These findings suggest that the ability of the BLA to alter specific cortical representations may underlie, at least in part, the modulatory influence of BLA activity on strengthening long-term memory. 相似文献
4.
Moerschbaecher JM Boren JJ Schrot J 《Journal of the experimental analysis of behavior》1978,29(2):225-232
A new technique was developed to study the repeated acquisition of conditional discriminations. Using a discrete trial procedure, pigeons were required to learn during each session a different two-member chain of conditional discriminations. Key color and geometric forms were used as stimuli. After the pigeons had reached a steady state of relearning (40 to 60 sessions), the technique was used to investigate variables that have previously been shown to affect the repeated acquisition of response sequences. Various (0 to 90 seconds) durations of timeout for errors were investigated in Experiment I. The stimulus change associated with a timeout, rather than its duration, was found to be the critical variable in acquisition of the discrimination. Extended training on a single chain was found to reduce total errors across sessions in Experiment II. Extended training (three sessions) did not, however, change the pattern of within-session error reduction. In some cases, extended training facilitated acquisition of a partially reversed discrimination. In Experiment III, color rather than chain position was found to control behavior, for three of the four birds, as the second stimulus dimension in the conditional situation. The results of these experiments replicate and extend previous findings concerning some of the variables that affect the repeated acquisition of response sequences. 相似文献
5.
Bussey TJ Saksida LM Murray EA 《Learning & memory (Cold Spring Harbor, N.Y.)》2006,13(2):103-5; author reply 106-7
6.
Glucocorticoids enhance taste aversion memory via actions in the insular cortex and basolateral amygdala 总被引:3,自引:0,他引:3
下载免费PDF全文

Miranda MI Quirarte GL Rodriguez-Garcia G McGaugh JL Roozendaal B 《Learning & memory (Cold Spring Harbor, N.Y.)》2008,15(7):468-476
It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function. Corticosterone (1.0 or 3.0 mg/kg) administered subcutaneously to male Sprague–Dawley rats immediately after the pairing of saccharin consumption with the visceral malaise-inducing agent lithium chloride (LiCl) dose-dependently increased aversion to the saccharin taste on a 96-h retention test trial. In a second experiment, rats received corticosterone either immediately after saccharin consumption or after the LiCl injection, when both stimuli were separated by a 3-h time interval, to investigate whether corticosterone enhances memory of the gustatory or visceral stimulus presentation. Consistent with the finding that the LiCl injection, but not saccharin consumption, increases endogenous corticosterone levels, corticosterone selectively enhanced CTA memory when administered after the LiCl injection. Suppression of this training-induced release of corticosterone with the synthesis-inhibitor metyrapone (35 mg/kg) impaired CTA memory, and was dose-dependently reversed by post-training supplementation of corticosterone. Moreover, direct post-training infusions of corticosterone into the insular cortex or basolateral complex of the amygdala, two brain regions that are critically involved in the acquisition and consolidation of CTA, also enhanced CTA retention, whereas post-training infusions into the dorsal hippocampus were ineffective. These findings provide evidence that glucocorticoid effects on memory consolidation are not limited to hippocampus-dependent spatial/contextual information, but that these hormones also modulate memory consolidation of discrete-cue associative learning via actions in other brain regions. 相似文献
7.
Rabbits with the electrolytic lesions of bilateral entorhinal cortex (EC) were trained with the hippocampal-dependent trace conditioning of the nictitating membrane response. The multiple-unit activity of the hippocampal CA1 region was recorded during conditioning. The conditioned stimulus was a tone (1 kHz, 85 dB, 200-ms duration), the unconditioned stimulus was a corneal air puff (3 psi, 150-ms duration), and the interstimulus interval was 750 ms. The EC-lesioned animals showed only 30% conditioned response (CR) by the ninth session while the sham-operated animals showed above 80% CR. The lesioned animals did not show learning-related changes in the hippocampal activity. When the training was switched to the 300-ms interstimulus interval trace conditioning, both groups learned above 80% CR. The EC-lesioned animals, however, showed less learning-related activity in the hippocampus than the sham-operated animals. These results suggest that the development of the learning-related activity in the hippocampus depends on the intact EC, and that the EC may provide a possible pathway conveying learning information from the cerebellum or cerebral cortex to the hippocampus during the trace conditioning. 相似文献
8.
9.
《Quarterly journal of experimental psychology (2006)》2013,66(1):65-80
Four experiments examined the effects of encoding multiple standards in a temporal generalization task in the visual and auditory modalities both singly and cross-modally, using stimulus durations ranging, across different experiments, from 100 to 1,400 ms. Previous work has shown that encoding and storing multiple auditory standards of different durations resulted in systematic interference with the memory of the standard, characterized by a shift in the location of peak responding, and this result, from Ogden, Wearden, and Jones (2008), was replicated in the present Experiment 1. Experiment 2 employed the basic procedure of Ogden et al. using visual stimuli and found that encoding multiple visual standards did not lead to performance deterioration or any evidence of systematic interference between the standards. Experiments 3 and 4 examined potential cross-modal interference. When two standards of different modalities and durations were encoded and stored together there was also no evidence of interference between the two. Taken together, these results, and those of Ogden et al., suggest that, in humans, visual temporal reference memory may be more permanent than auditory reference memory and that auditory temporal information and visual temporal information do not mutually interfere in reference memory. 相似文献
10.
Acetylcholine in the orbitofrontal cortex is necessary for the acquisition of a socially transmitted food preference
下载免费PDF全文

The social transmission of food preference task (STFP) has been used to examine the involvement of the hippocampus in learning and memory for a natural odor-odor association. However, cortical involvement in STFP has not been extensively studied. The orbitofrontal cortex (OFC) is important in odor-guided learning, and cholinergic depletion of the entire neocortex results in impairments in STFP. Here we examined the specific role of cholinergic modulation in the OFC by assessing the effect of 192 immunoglobulin G-saporin infusion directly into OFC prior to training on STFP. Cholinergic depletion in the OFC impaired expression of the socially transmitted odor association measured 2 d after training, indicating that cholinergic function in the OFC is essential for this form of associative learning. 相似文献
11.
The functions of the orbitofrontal cortex 总被引:21,自引:0,他引:21
Rolls ET 《Brain and cognition》2004,55(1):11-29
The orbitofrontal cortex contains the secondary taste cortex, in which the reward value of taste is represented. It also contains the secondary and tertiary olfactory cortical areas, in which information about the identity and also about the reward value of odours is represented. The orbitofrontal cortex also receives information about the sight of objects from the temporal lobe cortical visual areas, and neurons in it learn and reverse the visual stimulus to which they respond when the association of the visual stimulus with a primary reinforcing stimulus (such as taste) is reversed. This is an example of stimulus-reinforcement association learning, and is a type of stimulus-stimulus association learning. More generally, the stimulus might be a visual or olfactory stimulus, and the primary (unlearned) positive or negative reinforcer a taste or touch. A somatosensory input is revealed by neurons that respond to the texture of food in the mouth, including a population that responds to the mouth feel of fat. In complementary neuroimaging studies in humans, it is being found that areas of the orbitofrontal cortex are activated by pleasant touch, by painful touch, by taste, by smell, and by more abstract reinforcers such as winning or losing money. Damage to the orbitofrontal cortex can impair the learning and reversal of stimulus-reinforcement associations, and thus the correction of behavioural responses when there are no longer appropriate because previous reinforcement contingencies change. The information which reaches the orbitofrontal cortex for these functions includes information about faces, and damage to the orbitofrontal cortex can impair face (and voice) expression identification. This evidence thus shows that the orbitofrontal cortex is involved in decoding and representing some primary reinforcers such as taste and touch; in learning and reversing associations of visual and other stimuli to these primary reinforcers; and in controlling and correcting reward-related and punishment-related behavior, and thus in emotion. The approach described here is aimed at providing a fundamental understanding of how the orbitofrontal cortex actually functions, and thus in how it is involved in motivational behavior such as feeding and drinking, in emotional behavior, and in social behavior. 相似文献
12.
Miranda MI Rodríguez-García G Reyes-López JV Ferry B Ferreira G 《Neurobiology of learning and memory》2008,90(1):54-61
The importance of central β-adrenergic system has been essentially investigated in aversive/emotional learning tasks. However, recent data suggest that the β-adrenergic system is also required for incidental taste learning. In the present study we evaluated in rats whether β-adrenergic receptor activity is required for taste habituation, an incidental taste learning, and also for conditioned taste aversion (CTA) learning, an associative learning. To address this issue, a low dose of the β-adrenergic antagonist propranolol was infused before learning in either the basolateral amygdala (BLA) or the insular cortex (IC), two forebrain areas reported to play a key role in taste memory formation. Incidental taste learning was assessed using a single presentation of the sweet taste saccharin 0.1%, which is sufficient to increase saccharin consumption (relative to water baseline) during a second presentation. CTA was assessed by pairing the first saccharin 0.1% presentation with a delayed gastric malaise, thus causing a decrease in saccharin consumption (relative to water baseline) during a second presentation. Propranolol infusion in BLA (1 μg/0.2μl) or IC (2.5 μg/0.5 μl) before the first taste exposure impaired incidental taste learning but did not affect CTA. These results highlight the important role played by the β-adrenergic receptor activation in cortical and amygdaloid structures during taste learning. Moreover, they are the first to suggest that incidental learning is more sensitive to blockade of noradrenergic system than associative learning. 相似文献
13.
Carballo-Márquez A Vale-Martínez A Guillazo-Blanch G Martí-Nicolovius M 《Neurobiology of learning and memory》2009,91(1):98-101
We examined the involvement of muscarinic receptors in the basolateral amygdala (BLA) in the social transmission of food preference (STFP) learning by assessing the effects of scopolamine (20 microg/side), injected prior to social training, on a 24-h food-choice test. Muscarinic receptor blockade in the BLA significantly impaired STFP, as shown by the rats' chance preference for the odorized trained food. The present results are consistent with the suggestion that intact cholinergic transmission in the BLA is necessary for acquisition and/or initial consolidation and provide evidence that BLA integrity is part of the underlying circuit of STFP learning. 相似文献
14.
Chauveau F Piérard C Coutan M Drouet I Liscia P Béracochéa D 《Neurobiology of learning and memory》2008,90(2):395-403
Previous data from our team have shown that pre-test stress in mice reversed the pattern of memory retrieval in a contextual serial spatial task (CSD; Celerier, A., Pierard, C., Rachbauer, D., Sarrieau, A., & Beracochea, D. (2004). Contextual and serial discriminations: A new learning paradigm to assess simultaneously the effects of acute stress on retrieval of flexible or stable information in mice. Learning and Memory, 11, 196-204). The present study is aimed at determining brain areas which might be critically involved in mediating the stress effect on memory retrieval in the CSD task. For that purpose, we studied hereby the effects of ibotenic acid lesions of either the prefrontal cortex (PFC) or the basolateral amygdala (BLA) in Stressed or Non-Stressed Balb/c mice on memory retrieval in the CSD task. In that task, mice learned two successive spatial discriminations (D1 and D2) within two different internal contexts in a four-hole board. The stressor (electric footshocks) was delivered 5 min before test, occurring 24 h after acquisition. During test, mice were relocated either on the floor of the first or of the second discrimination. Results showed that (i) spatial memory was substantial and remained unaffected both by lesions and stress; (ii) Non-Stressed controls as well as Non-Stressed or Stressed PFC and BLA-lesioned mice remembered accurately D1 but not D2; and (iii) in contrast, Stressed controls accurately remembered D2 but not D1. In parallel to behavioral experiments, we also showed that PFC and BLA lesions did not affect the stress-induced increase of plasma corticosterone levels. All together, PFC and BLA integrity are not necessary for retrieval processes per se; in contrast, the PFC and BLA are critically involved in the mediation of the deleterious stress effects on serial order memory retrieval. 相似文献
15.
Distinct contributions of the basolateral amygdala and the medial prefrontal cortex to learning and relearning extinction of context conditioned fear
下载免费PDF全文

We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but post-extinction infusion spared retention. Pre-extinction infusion of the GABA(A) agonist, muscimol, depressed freezing and impaired retention as did post-extinction infusion. In Experiment 2, pre-extinction mPFC infusion of ifenprodil spared the development of inhibition whereas muscimol depressed freezing. Both impaired retention when infused pre- or post-extinction. Thus, the development of inhibition involves NMDAr activation in the BLA, whereas its consolidation involves both NMDAr activation in the mPFC and NMDAr-independent mechanisms in the BLA. In Experiment 3, BLA infusion of ifenprodil impaired relearning and retention of inhibition when infused before but did not impair retention when infused after re-extinction. BLA infusion of muscimol depressed freezing but did not impair retention when infused before or after re-extinction. In Experiment 4, mPFC infusion of ifenprodil impaired relearning when infused before re-extinction, whereas muscimol depressed responses. Both drugs impaired retention when infused into the mPFC before or after re-extinction. Thus, relearning to inhibit fear responses involves NMDAr activation in both the BLA and mPFC and consolidation of the inhibitory memory involves NMDAr activation in the mPFC. However, relearning and consolidation occur in the absence of neuronal activity within the BLA. We propose that NMDAr in the mPFC supports relearning inhibition when the BLA is inactivated. 相似文献
16.
Savonenko A Werka T Nikolaev E Zieliñski K Kaczmarek L 《Learning & memory (Cold Spring Harbor, N.Y.)》2003,10(4):293-303
Although much has been learned about the role of the amygdala in Pavlovian fear conditioning, relatively little is known about an involvement of this structure in more complex aversive learning, such as acquisition of an active avoidance reaction. In the present study, rats with a pretraining injection of the N-methyl-D-aspartate (NMDA) receptor antagonist, 2-amino-5-phosphonopentanoic acid (APV), into the basolateral amygdala (BLA) were found to be impaired in two-way active avoidance learning. During multitrial training in a shuttle box, the APV-injected rats were not different from the controls in sensitivity to shock or in acquisition of freezing to contextual cues. However, APV injection led to impaired retention of contextual fear when tested 48 h later, along with an attenuation of c-Fos expression in the amygdala. These results are consistent with the role of NMDA receptors of the BLA in long-term memory of fear, previously documented in Pavlovian conditioning paradigms. The APV-induced impairment in the active avoidance learning coincided with deficits in directionality of the escape reaction and in attention to conditioned stimuli. These data indicate that normal functioning of NMDA receptors in the basolateral amygdala is required during acquisition of adaptive instrumental responses in a shuttle box but is not necessary for acquisition of short-term contextual fear in this situation. 相似文献
17.
Previous findings suggest that the rostral anterior cingulate cortex (rACC) is involved in memory for emotionally arousing training. There is also extensive evidence that the basolateral amygdala (BLA) modulates the consolidation of emotional arousing training experiences via interactions with other brain regions. The present experiments examined the effects of posttraining intra-rACC infusions of the cholinergic agonist oxotremorine (OXO) on inhibitory avoidance (IA) retention and investigated whether the BLA and rACC interact in enabling OXO effects on memory. In the first experiment, male Sprague-Dawley rats were implanted with bilateral cannulae above the rACC and given immediate posttraining OXO infusions. OXO (0.5 or 3 ng) induced significant enhancement of retention performance on a 48-h test. In the second experiment, unilateral posttraining OXO infusions (0.5, 3.0 or 10 ng) enhanced retention when infused into rACC, but not caudal ACC, consistent with previous evidence that ACC is composed of functionally distinct regions. A third experiment investigated the effects of posttraining intra-rACC OXO infusions (0.5 or 10 ng) in rats with bilateral sham or NMDA-induced lesions of the BLA. The BLA lesions did not impair IA retention, but blocked the enhancement induced by posttraining intra-rACC OXO infusions. Lastly, unilateral NMDA lesions of rACC blocked the enhancement of IA retention induced by posttraining ipsilateral OXO infusions into the BLA. These findings support the hypothesis that the rACC is involved in modulating the storage of emotional events and provide additional evidence that the BLA modulates memory consolidation through interactions with efferent brain regions, including the cortex. 相似文献
18.
Initially-neutral cues paired with rewards are thought to acquire motivational significance, as if the incentive motivational value of the reward is transferred to the cue. Such cues may serve as secondary reinforcers to establish new learning, modulate the performance of instrumental action (Pavlovian-instrumental transfer, PIT), and be the targets of approach and other cue-directed behaviors. Here we examined the effects of lesions of the ventral striatal nucleus accumbens (ACb) and the basolateral amygdala (BLA) on the acquisition of discriminative autoshaped lever-pressing in rats. Insertion of one lever into the experimental chamber was reinforced by sucrose delivery, but insertion of another lever was not reinforced. Although sucrose was delivered independently of the rats' behavior, sham-lesioned rats rapidly came to press the reinforced but not the nonreinforced lever. Bilateral ACb lesions impaired the initial acquisition of sign-tracking but not its terminal levels. In contrast, BLA lesions produced substantial deficits in terminal levels of sign-tracking. Furthermore, whereas ACb lesions primarily affected the probability of lever press responses, BLA lesions mostly affected the rate of responding once it occurred. Finally, disconnection lesions that disrupted communication between ACb and BLA produced both sets of deficits. We suggest that ACb is important for initial acquisition of consummatory-like responses that incorporate hedonic aspects of the reward, while BLA serves to enhance such incentive salience once it is acquired. 相似文献
19.
Enhancement of inhibitory avoidance and conditioned taste aversion memory with insular cortex infusions of 8-Br-cAMP: involvement of the basolateral amygdala
下载免费PDF全文

There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the acquisition/consolidation of conditioned taste aversion (CTA). Posttraining infusion into the IC of 0.3 microg oxotremorine and 1.25 microg 8-Br-cAMP enhanced IA retention. Infusions of 8-Br-cAMP, but not oxotremorine, into the IC enhanced taste aversion. The experiments also examined whether noradrenergic activity in the basolateral amygdala (BLA) is critical in enabling the enhancement of CTA and IA memory induced by drug infusions administered into the IC. For both CTA and IA, ipsilateral infusions of beta-adrenergic antagonist propranolol administered into the BLA blocked the retention-enhancing effect of 8-Br-cAMP or oxotremorine infused into the IC. These results indicate that the IC is involved in the consolidation of memory for both IA and CTA, and this effect requires intact noradrenergic activity into the BLA. These findings provide additional evidence that the BLA interacts with other brain regions, including sensory cortex, in modulating memory consolidation. 相似文献
20.
Recognition memory for complex visual discriminations is influenced by stimulus interference in rodents with perirhinal cortex damage
下载免费PDF全文

Rats with perirhinal cortex (PRC), hippocampal, or sham lesions were trained on a successive discrimination go/no-go task to examine recognition memory for an array of visual objects with varying interference among the objects in the array. Rats were trained to recognize a target array consisting of four particular objects that could be presented in any one of four possible configurations to cover baited food wells. If the four target objects were presented, the rat should displace each object to receive food. However, if a novel object replaced any one or more of the target objects, then the rat should withhold its response. The number of novel objects presented on nonrewarded trials varied from one to four. The fewer the number of novel objects in the array, the more interference the array shared with the target array, therefore increasing task difficulty. An increased number of novel objects should result in less interference with the target array and decreased task difficulty. Although accuracy was slightly lower in rats with hippocampal lesions compared with controls, the learning of the groups was not statistically different. In contrast, rats with PRC lesions were significantly impaired in learning compared with both control and hippocampal-lesioned rats. The results suggest that recognition memory for complex visual discriminations is affected by stimulus interference in rodents with PRC damage. 相似文献