首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visual stimuli for strabismic suppression   总被引:2,自引:0,他引:2  
C M Schor 《Perception》1977,6(5):583-593
The effects of orientation and spatial frequency of grating stimuli upon suppression were examined with a binocular rivalry paradigm in a group of ten strabismic patients and in a control normal group. Duration, frequency, and period of rivalry were examined as functions of differences in orientation and spatial frequency of dichoptic achromatic sinusoidal gratings. Records were made of responses by the sighting and by the nonsighting eye as well as responses during periods of combined binocular vision. Strabismic subjects reported normal binocular rivalry when presented with gratings of dissimilar orientation. Suppression of the deviating eye in strabismic subjects occurred with stimuli of similar orientation and was unaffected by spatial-frequency differences between dichoptic stimuli. Suppression was most intense under conditions that normally stimulate stereopsis and sensory fusion.  相似文献   

2.
Hancock S  Andrews TJ 《Perception》2007,36(2):288-298
When incompatible images are presented to corresponding regions of each eye, perception alternates between the two monocular views (binocular rivalry). In this study, we have investigated how involuntary (exogenous) and voluntary (endogenous) attention can influence the perceptual dominance of one rival image or the other during contour rivalry. Subjects viewed two orthogonal grating stimuli that were presented to both eyes. Involuntary attention was directed to one of the grating stimuli with a brief change in orientation. After a short period, the cued grating was removed from the image in one eye and the uncued grating was removed from the image in the other eye, generating binocular rivalry. Subjects usually reported dominance of the cued grating during the rivalry period. We found that the influence of the cue declined with the interval between its onset and the onset of binocular rivalry in a manner consistent with the effect of involuntary attention. Finally, we demonstrated that voluntary attention to a grating stimulus could also influence the ongoing changes in perceptual dominance that accompany longer periods of binocular rivalry Voluntary attention did not increase the mean dominance period of the attended grating, but rather decreased the mean dominance period of the non-attended grating. This pattern is analogous to increasing the perceived contrast of the attended grating. These results suggest that the competition during binocular rivalry might be an example of a more general attentional mechanism within the visual system.  相似文献   

3.
N J Wade  C M de Weert 《Perception》1986,15(4):419-434
Five experiments are reported in which the aftereffect paradigm was applied to binocular rivalry. In the first three experiments rivalry was between a vertical grating presented to the left eye and a horizontal grating presented to the right eye. In the fourth experiment the rivalry stimuli consisted of a rotating sectored disc presented to the left eye and a static concentric circular pattern presented to the right. In experiment 5 rivalry was between static radiating and circular patterns. The predominance durations were systematically influenced by direct (same eye) and indirect (interocular) adaptation in a manner similar to that seen for spatial aftereffects. Binocular adaptation produced an aftereffect that was significantly smaller than the direct aftereffect, but not significantly different from the indirect one. A model is developed to account for the results; it involves two levels of binocular interaction in addition to monocular channels. It is suggested that the site of spatial aftereffects is the same as that for binocular rivalry, rather than sequentially prior.  相似文献   

4.
The effects of luminance contrast and spatial frequency on the motion aftereffect were investigated. The point of subjective equality for velocity was measured as an index of the motion aftereffect. The largest effect was observed when a low contrast grating (5%) was presented as a test stimulus after adaptation to a high contrast grating (100%) in the low spatial frequency condition (0.8 cycle deg.-1). On the whole, the effect increased with increasing adapting contrast and with decreasing test contrast or spatial frequency. Small effects were observed at high test contrasts. These results were inconsistent with those of Keck, Palella, and Pantle in 1976. Analysis showed that there was no saturation on velocity of the motion aftereffect above 5% of the contrast although Keck, et al. (1976) found that the incremental increases of the effect above 3% adapting contrast were small.  相似文献   

5.
Ooi TL  He ZJ 《Perception》2006,35(5):581-603
Theoretical and empirical studies show that the visual system relies on boundary contours and surface features (e.g. textures) to represent 3-D surfaces. When the surface to be represented has little texture information, or has a periodic texture pattern (grating), the boundary contour information assumes a larger weight in representing the surface. Adopting the premise that the mechanisms of 3-D surface representation also determine binocular rivalry perception, the current paper focuses on whether boundary contours have a similar role in binocular rivalry. In experiment 1, we tested the prediction that the visual system prefers selecting an image/figure defined by boundary contours for rivalry dominance. We designed a binocular rivalry stimulus wherein one half-image has a boundary contour defined by a grating disk on a background with an orthogonal grating orientation. The other half-image consists solely of the (same orientation) grating background without the grating disk, ie no boundary contour. Confirming our prediction, the predominance for the half-image with the grating disk is approximately 90%, despite the fact that the grating disk corresponds to an area with orthogonal grating in the fellow eye. The advantage of the grating disk is dramatically reduced to about 50% predominance when a boundary contour is added to the background-only half-image at the location corresponding to the grating disk. We attribute this reduced advantage to the formation of a corresponding binocular boundary contour. In experiment 2 the grating background was substituted by a random-dot background in a similar stimulus design. We found that the perceptual salience of the corresponding binocular boundary contours extracted by the interocular matching process is an important factor in determining the dynamics of binocular rivalry. Experiment 3 showed that vertical lines with uneven thickness and spacing as the background reduce the contribution of the monocular boundary contour of the grating disk in binocular rivalry, possibly through the formation of binocular boundary contours between the local edges (vertical components) of the vertical lines and the corresponding grating disk.  相似文献   

6.
The precision of velocity coding for moving stimuli of different spatial frequencies was assessed by measuring velocity discrimination thresholds for a 1-c/deg grating paired with a grating whose spatial frequency ranged from 0.25 to 4 c/deg and for grating pairs of the same spatial frequency (0.25, 1, and 4 c/deg). The gratings always moved upward, with velocities ranging from 0.5 to 16 deg/sec, Velocity discrimination was as precise for stimuli that varied in spatial frequency by: ±2 octaves (0.25 vs. 1 c/deg and 4 vs. 1 c/deg) as for stimuli of the same spatial frequency, for specific ranges of velocity that depended on the spatial and, therefore, the temporal frequencies of the stimuli. Compared with a 1-c/deg grating, the perceived velocity of 4-c/deg gratings was about 1.3 times faster and that of 0.25-c/deg gratings was about 1.3 times slower. Although these perceived velocity biases imply variation of velocity-signal processing among spatial frequency channels, the discrimination results indicate that the motion-sensing system can compare signals across different spatial frequency channels to make fine velocity discrimination within appropriate temporal frequency limits.  相似文献   

7.
Observers tracked binocular rivalry between a pair of small, foveally viewed gratings whose orientation differed between the 2 eyes. In Experiment 1, a textured annulus surrounding 1 eye's grating increased the total duration of exclusive visibility of the grating only when the grating-annulus separation was less than 0.5 degree. In Experiment 2, observers tracked the visibility of a monocular annulus that surrounded a foveally viewed grating that was either engaged in rivalry or fused with a grating alone viewed by the other eye. The visibility of the annulus was greater when the grating it surrounded was not undergoing rivalry fluctuations. In Experiment 3, the predominance of a rival grating was greater when the contours in the surrounding annulus were orthogonal to those of the rival grating. In Experiment 4, total exclusive visibility of a given grating-annulus target was greater when the grating and the annulus contained the same orientation.  相似文献   

8.
Observers with good stereoacuity judged which eye received sine-wave grating patterns in a two-category forced-choice procedure. Large individual differences were found, but for most observers reliable discrimination was achieved at low spatial frequencies. No observer could perform the task above chance levels at high spatial frequencies. Discrimination was unaffected by retinal location, grating orientation, grating contrast, stimulus duration, or practice with feedback. Among observers who could perform the task, the following results were obtained: (1) Introduction of high spatial frequency components did not interfere with performance so long as a low spatial frequency component was present. (2) When gratings of low equal spatial frequency were presented to both eyes simultaneously at different contrast levels, observers could identify which eye received the higher contrast. (3) At low spatial frequencies, observers could distinguish monocular from binocular presentation. (4) Temporal frequency variations (counterphase flicker) influenced performance for some observers. Binocular summation and interocular transfer were unaffected by the spatial frequency variations which modulate utrocular discrimination. A new procedure for measuring stereopsis was developed which made possible comparison of utrocular discrimination with stereopsis at specific spatial frequencies. Stereopsis appeared mildly affected by spatial frequency.  相似文献   

9.
Five experiments examined whether recognizable stimuli predominate in binocular rivalry. It was found that a face predominated more than did a pattern equated for spatial frequency, luminance, and contrast; an objective reaction time procedure confirmed predominance of the face. The face was still liable to fragmentation as stimulus size increased. Observers tracked exclusive dominance of a picture of a camouflaged figure (a Dalmatian dog) prior to and then following discovery of the figure's presence; control observers received the same protocol with a scrambled version of the dog stimulus. Compared with control results, predominance of the dog picture was higher even before observers knew of the camouflaged figure. Inversion of the dog figure reduced its predominance. Binocular rivalry is sensitive to object-related, configural properties of a stimulus.  相似文献   

10.
Kawabata H  Gyoba J  Inoue H  Ohtsubo H 《Perception》2001,30(7):867-874
Four groups of eight 4-month-old infants were each habituated to one of four displays consisting of a grating of either low (0.4 cycle deg(-1) or high (1.2 cycles deg(-1) spatial frequency, whose central portion was covered up with a horizontal occluder which was either narrow (1.33 deg) or broad (4.17 deg). Posthabituation displays consisted of a complete grating of the same frequency as the habituated grating, along with a separate grating whose central portion was replaced with a black gap of the same height as the occluder in the habituation displays. All the infants, except those who were habituated to the high frequency with the broad occluder, looked longer at the separate grating than the complete grating display during posthabituation trials. Previously, we found that infants under 1 month of age perceive the grating continuation only when the occluder height is less than about 0.5 cycle of the grating; our present results show that this figure increases to about 1.6 cycles of the grating frequency in the case of 4-month-old infants. These findings indicate that those developmental changes depend on both the sufficiency of visual information available and the efficiency of the perceptual ability of infants for grasping spatial relationships.  相似文献   

11.
Liu, Tyler, and Schor (1992 Vision Research 32 1471-1479) reported the surprising finding that dichoptically presented orthogonal sine-wave gratings do not always produce binocular rivalry. Gratings of high spatial frequency, and especially of low contrast, fuse to produce a stable percept of a dichoptic plaid. Using a somewhat different perceptual task, we replicated those findings and extended them. The probability of a plaid percept is higher for square-wave gratings than for sine-wave gratings, and higher still for rectangular-wave gratings with high duty cycles (with very thin light or dark bars). Experiments were conducted to test whether this duty-cycle effect was due to changes in overall luminance, or in the size of the regions of luminance congruity (which may reduce the probability of rivalry), but no such effects could account for the results. The presence of locally conflicting contour information in the two eyes was shown to be an important determinant of rivalry onset, but, since removing such regions did not eliminate rivalry, other factors also have a role to play. The spatial frequency composition of the gratings is one such factor which is consistent with all of the findings we report.  相似文献   

12.
V Morison  A Slater 《Perception》1985,14(3):345-348
A preferential-looking procedure was used to investigate newborns' responses to square-wave gratings varying in spatial frequency and contrast. A preliminary study confirmed that the gratings used in the experiment were suprathreshold. In the experiment newborns' preference for a grating of 0.1 cycle deg-1 within the peak contrast sensitivity range was examined. Reduction in the contrast of this grating led to a transfer of the preference to a high-contrast grating of the same space-averaged luminance with a spatial frequency outside this range (0.42 cycle deg-1). The findings are discussed with reference to the role of the contrast sensitivity function in pattern preferences of newborns: it is suggested that contrast and spatial frequency interact in determining pattern preferences.  相似文献   

13.
Apparent velocity of motion aftereffects in central and peripheral vision   总被引:2,自引:0,他引:2  
M J Wright 《Perception》1986,15(5):603-612
Adapting to a drifting grating (temporal frequency 4 Hz, contrast 0.4) in the periphery gave rise to a motion aftereffect (MAE) when the grating was stopped. A standard unadapted foveal grating was matched to the apparent velocity of the MAE, and the matching velocity was approximately constant regardless of the visual field position and spatial frequency of the adapting grating. On the other hand, when the MAE was measured by nulling with real motion of the test grating, nulling velocity was found to increase with eccentricity. The nulling velocity was constant when scaled to compensate for changes in the spatial 'grain' of the visual field. Thus apparent velocity of MAE is constant across the visual field, but requires a greater velocity of real motion to cancel it in the periphery. This confirms that the mechanism underlying MAE is spatially-scaled with eccentricity, but temporally homogeneous. A further indication of temporal homogeneity is that when MAE is tracked, by matching or by nulling, the time course of temporal decay of the aftereffect is similar for central and for peripheral stimuli.  相似文献   

14.
Binocular rivalry occurs when the two eyes are presented with incompatible stimuli and the perceived image alternates between the two stimuli. The aim of this study was to find out whether the periodic perceptual loss of a monocular stimulus during binocular rivalry is mirrored by a comparable loss of contrast sensitivity. We presented brief test stimuli to one eye while its conditioning stimulus was dominant or suppressed. The test stimuli were varied widely across four stimulus domains--namely, the relative stimulation of medium- and long-wavelength-sensitive cones, duration, spatial frequency, and grating orientation. The result in each case was the same. Suppression depended slightly or not at all on the type of test stimulus, and contrast sensitivity during suppression was around 64% of that during dominance. The effect of suppression on sensitivity is therefore very weak, relative to its effect on the perceived image. Furthermore, suppression was largely independent of the similarity between the conditioning and the test stimuli, indicating that our results are better explained by eye suppression than by stimulus suppression. A model is presented to account for the small, monocular sensitivity loss during suppression: It assumes that test detection precedes conditioning stimulus perception in the visual pathway.  相似文献   

15.
R Blake  R Overton 《Perception》1979,8(2):143-152
Two experiments were performed to localize the site of binocular rivalry suppression in relation to the locus of grating adaptation. In one experiment it was found that phenomenal suppression of a high-contrast adaptation grating presented to one eye had no influence on the strength of the threshold-elevation aftereffect measured interocularly. Evidently information about the adaptation grating arrives at the site of the aftereffect (presumably binocular neurons) even during suppression. In a second experiment 60 s of grating adaptation was found to produce a short-term reduction in the predominance of the adapted eye during binocular rivalry. These findings provide converging lines of evidence that suppression occurs at a site in the human visual system after the locus of grating adaptation and, hence, after the striate cortex.  相似文献   

16.
Binocular rivalry is a phenomenon of visual competition in which perception alternates between two monocular images. When two eye’s images only differ in luminance, observers may perceive shininess, a form of rivalry called binocular luster. Does dichoptic information guide attention in visual search? Wolfe and Franzel (Perception & Psychophysics, 44(1), 81–93, 1988) reported that rivalry could guide attention only weakly, but that luster (shininess) “popped out,” producing very shallow Reaction Time (RT) × Set Size functions. In this study, we have revisited the topic with new and improved stimuli. By using a checkerboard pattern in rivalry experiments, we found that search for rivalry can be more efficient (16 ms/item) than standard, rivalrous grating (30 ms/item). The checkerboard may reduce distracting orientation signals that masked the salience of rivalry between simple orthogonal gratings. Lustrous stimuli did not pop out when potential contrast and luminance artifacts were reduced. However, search efficiency was substantially improved when luster was added to the search target. Both rivalry and luster tasks can produce search asymmetries, as is characteristic of guiding features in search. These results suggest that interocular differences that produce rivalry or luster can guide attention, but these effects are relatively weak and can be hidden by other features like luminance and orientation in visual search tasks.  相似文献   

17.
Binocular rivalry between a horizontal and a vertical grating was examined in six experiments. The gratings could be presented in a static form or dynamically so that either one or both gratings moved. The motion consisted of a symmetrical transformation of the gratings about their centers, so that the lines moved outwards or inwards. During rivalry, a moving pattern was visible for about 50% longer than an equivalently oriented static pattern (Experiments 1, 2, and 4). When both gratings were in motion (Experiments 3 and 5), the course of rivalry was similar to that found for two static gratings. The duration of dominance of the moving grating was influenced by its velocity (Experiment 6). The results are interpreted in terms of the stimulus strengths of the static and dynamic patterns.  相似文献   

18.
Binocular rivalry was investigated using gratings of different orientations in three experiments. No consistent effects of orientation were found for predominance measures of rivalry between real images. Rivalrous afterimages, on the other hand, did exhibit orientation selectivity: vertical gratings were visible for longer than were 45-deg gratings. This effect was compared to the similar orientation selectivity found for monocular observation of grating afterimages. Comparisons of binocular rivalry between real images and afterimages were made in terms of the frequency distributions of the dominance periods.  相似文献   

19.
Spatial contrast sensitivity functions and temporal integration functions for gratings with dark surrounds were measured at various eccentricities in photopic vision. Contrast sensitivity decreased with increasing eccentricity at all exposure durations and spatial frequencies tested. The decrease was faster at high than at low spatial frequencies, but similar at different exposure durations. When cortically similar stimulus conditions were produced at different eccentricities by M-scaling, contrast sensitivity became independent of visual field location at all exposure durations tested. The results support the view that in photopic vision spatiotemporal information processing is qualitatively similar across the visual field, and that quantitative differences result from retino-topical differences in ganglion cell sampling. For gratings of constant retinal area temporal integration (improvement of contrast sensitivity with increasing exposure duration) was more extensive at high than at low retinal spatial frequencies but independent of cortical spatial frequency and eccentricity. For M-scaled gratings temporal integration was more extensive at high than at low cortical spatial frequencies but independent of retinal spatial frequency and eccentricity. The results suggest that the primary determinant of temporal integration is not spatial frequency but grating value that is calculated as AF2 square cycles (cycle2), where A is grating area and F spatial frequency.  相似文献   

20.
When an observer is visually presented with a sinusoidal grating, he will often do worse in detecting a given grating when he is uncertain about its spatial frequency than when he is certain. Theoretical explanations of such uncertainty effects assume that the observer has attentional control over multiple spatial-frequency channels. This attentional control can be selectively allocated. If one grating is presented on most of the trials, randomly intermixed with trials of gratings of other spatial frequencies, an experienced observer will use a stationary single-band attention strategy. If two gratings, separated in spatial frequency by four octaves, are randomly presented on most of the intermixed trials, an experienced observer will use a more complex attention strategy; he can monitor the spatial frequencies of the two extreme stimuli with little or no monitoring of intermediate spatial frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号