首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the phantom illumination illusion, luminance ramps ranging from black to white induce a brightness enhancement on an otherwise homogeneous dark background. The strength of the illusion was tested with regard to the extension of the brightness inducing perimeter, surrounding the target area by manipulating the number of inducers (exp. 1) and the size of the inducers (exp. 2). Participants' task was to rate the difference in brightness between the target area and the background. Results show that the illusion occurs only when the target area is not completely segregated from the background by luminance ramps; vice versa, when the target area is delimited by a continuous gradient, it appears darker than the background. These findings suggest a major role of figure-ground organization in the appearance of the illusion. This hypothesis was tested in a rating task experiment with three types of target area shapes circumscribed by four types of edges: luminance contours, illusory contours, no contours, and ambiguous contours. Illusory contours, just as luminance contours, hinder the illusion and produce a darkening of the target area. A control experiment measured the brightness of the previous stimuli without luminance ramps: all configurations resulted in a darkening of the target area. Results from all experiments suggest that figure-ground segmentation plays a major role in the determination of both illumination and lightness in stimuli with luminance gradients.  相似文献   

2.
A pattern of luminances equivalent to that of a traditional simultaneous lightness display (two equal gray squares, one on a white background and the other on an adjacent black background) was presented to observers under two conditions, and matches were obtained for both perceived reflectance and perceived illumination level of the squares and their backgrounds. In one condition, the edge dividing the two backgrounds was made to appear as the boundary between a white and a black surface, as in the traditional pattern. The squares then were perceived as almost the same shade of middle gray. In the other condition, a context was supplied that made the edge between the backgrounds appear as the boundary between two illumination levels, causing one square to appear black and the other white. These results were interpreted as a problem for local ratio theories, local edge theories, and lateral inhibition explanations of lightness constancy, but as support for the concepts of edge classification, edge integration, and the retinal image as a dual image.  相似文献   

3.
Contrary to the implication of the term "lightness constancy", asymmetric lightness matching has never been found to be perfect unless the scene is highly articulated (i.e., contains a number of different reflectances). Also, lightness constancy has been found to vary for different observers, and an effect of instruction (lightness vs. brightness) has been reported. The elusiveness of lightness constancy presents a great challenge to visual science; we revisit these issues in the following experiment, which involved 44 observers in total. The stimuli consisted of a large sheet of black paper with a rectangular spotlight projected onto the lower half and 40 squares of various shades of grey printed on the upper half. The luminance ratio at the edge of the spotlight was 25, while that of the squares varied from 2 to 16. Three different instructions were given to observers: They were asked to find a square in the upper half that (i) looked as if it was made of the same paper as that on which the spotlight fell (lightness match), (ii) had the same luminance contrast as the spotlight edge (contrast match), or (iii) had the same brightness as the spotlight (brightness match). Observers made 10 matches of each of the three types. Great interindividual variability was found for all three types of matches. In particular, the individual Brunswik ratios were found to vary over a broad range (from .47 to .85). That is, lightness matches were found to be far from veridical. Contrast matches were also found to be inaccurate, being on average, underestimated by a factor of 3.4. Articulation was found to essentially affect not only lightness, but contrast and brightness matches as well. No difference was found between the lightness and luminance contrast matches. While the brightness matches significantly differed from the other matches, the difference was small. Furthermore, the brightness matches were found to be subject to the same interindividual variability and the same effect of articulation. This leads to the conclusion that inexperienced observers are unable to estimate both the brightness and the luminance contrast of the light reflected from real objects lit by real lights. None of our observers perceived illumination edges purely as illumination edges: A partial Gelb effect ("partial illumination discounting") always took place. The lightness inconstancy in our experiment resulted from this partial illumination discounting. We propose an account of our results based on the two-dimensionality of achromatic colour. We argue that large interindividual variations and the effect of articulation are caused by the large ambiguity of luminance ratios in the stimulus displays used in laboratory conditions.  相似文献   

4.
Lightness constancy in complex scenes requires that the visual system take account of information concerning variations of illumination falling on visible surfaces. Three experiments on the perception of lightness for three-dimensional (3-D) curved objects show that human observers are better able to perform this accounting for certain scenes than for others. The experiments investigate the effect of object curvature, illumination direction, and object shape on lightness perception. Lightness constancy was quite good when a rich local gray-level context was provided. Deviations occurred when both illumination and reflectance changed along the surface of the objects. Does the perception of a 3-D surface and illuminant layout help calibrate lightness judgments? Our results showed a small but consistent improvement between lightness matches on ellipsoid shapes, relative to flat rectangle shapes, under illumination conditions that produce similar image gradients. Illumination change over 3-D forms is therefore taken into account in lightness perception.  相似文献   

5.
Hochberg and Beck (1954) found that an objectively upright trapezoid, when illuminated from above, appeared darker if it was viewed monocularly and lighter if it was viewed binocularly. Illuminated from in front, the same trapezoid then appeared lighter under monocular and darker under binocular viewing. Since the target appeared slanted under monocular but upright under binocular viewing, these changes in apparent lightness could be attributed, wholly or in part, to the apparent angle of incidence of the illumination on the surface. In two experiments, when 8-min periods of dark adaptation were introduced between monocular and binocular viewing, but when the arrangements were otherwise approximately the same as those of Hochberg and Beck, their results could not be observed. A third experiment demonstrated that the monocularly observed trapezoids did appear slanted.  相似文献   

6.
7.
Howe PD 《Perception》2006,35(3):291-301
What determines an object's lightness remains unclear, but it is generally thought that the ratios of its luminance to the luminance of other objects in a scene play a crucial role because these ratios allow the relative reflectance of each object to be estimated, providing all the objects are under the same illumination. Because objects that lie in the same plane are typically illuminated equally, it has been suggested that it is the luminance ratios between coplanar objects that primarily determine lightness (Gilchrist, 1977 Science 195 185-187; Gilchrist et al, 1999 Psychological Review 106 795-834). An alternative hypothesis is that perceived illumination differences can affect lightness directly. As the studies that provided evidence for the coplanar ratio hypothesis always varied the illumination and the coplanar relationships simultaneously, it is unclear which hypothesis is correct. I measured the influence of each factor separately and found that the perceived illumination differences have a greater effect on lightness.  相似文献   

8.
Anchoring theory (Gilchrist et al, 1999 Psychological Review 106 795-834) predicts a wide range of lightness errors, including failures of constancy in multi-illumination scenes and a long list of well-known lightness illusions seen under homogeneous illumination. Lightness values are computed both locally and globally and then averaged together. Local values are computed within a given region of homogeneous illumination. Thus, for an object that extends through two different illumination levels, anchoring theory produces two values, one for the patch in brighter illumination and one for the patch in dimmer illumination. Observers can give matches for these patches separately, but they can also give a single match for the whole object. Anchoring theory in its current form is unable to predict these object matches. We report eight experiments in which we studied the relationship between patch matches and object matches. The results show that the object match represents a compromise between the match for the patch in the field of highest illumination and the patch in the largest field of illumination. These two principles are parallel to the rules found for anchoring lightness: highest luminance rule and area rule.  相似文献   

9.
According to Koffka (1935), the lightness of a target surface is determined by the relationship between the target and the illumination frame of reference to which it belongs. However, each scene contains numerous illumination frames, and judging each one separately would lead to an enormous amount of computing. Grouping those frames that are in the same illumination would simplify the computation. We report a series of experiments demonstrating that nonadjacent regions of the visual field under the same illumination level are perceptually grouped together and function, to some extent, as a single framework. A small coplanar group of patches under its own illumination exhibits compression of perceived range of gray shades. We obtained the reduction in compression in the presence of an identically illuminated 25-patch Mondrian tableau mounted nearby the coplanar group. The influence of the Mondrian display was reduced when it was (a) moved laterally away from the test display, (b) moved farther back in depth from the test display, or (c) rotated to a different orientation.  相似文献   

10.
The present study concerns the distinctness of the 3-D shape-induced on flat displays by spacemodulated illumination (“shape from shading”). The displays that we used varied in structure, hue contrast, lightness contrast, and in the number of reflectance edges present. The modulations of the illumination were a square-wave grating, a gradual modulation (a blurred grating), and an “O’Brien modulation,” which combines an edge and a gradient. The displays were compared, using the paired comparison method, as to the distinctness of the perceived 3-D form. The results showed that the structure and chromatic color of the display were important factors facilitating the distinctness of the induced 3-D shape under all the modulation conditions. The results are discussed in relation to the “vector model” for color constancy, proposed in earlier papers.  相似文献   

11.
The constancy of a 16-step achromatic Munsell scale was tested with regards to background variations in two experiments. In experiment 1 three groups of observers were asked to find lightness matches for targets in simultaneous lightness displays by using a 16-step achromatic Munsell scale placed on a white, black, or white-black checkered background. In experiment 2, a yellow-blue checkered background and a green-red checkered background replaced Munsell scales on the black and on the white backgrounds. Significant effects of scale background on matches were found only in experiment 1, suggesting that background luminance is a crucial factor in the overall appearance of the scale. The lack of significant differences in experiment 2, however, may stand for an overall robustness of the scale with respect to background luminance changes occurring within certain luminance ranges.  相似文献   

12.
The speed of processes underlying lightness constancy was studied by having observers discriminate small differences in simulated lightness under an oscillating illumination. The period of oscillation varied from 0.25 to 120 sec. The target was a 1 degrees square which appeared for 150 msec at random intervals either directly against a uniform background or separated from the background by a 1 degrees dark gap. When the target and background were adjacent to each other, discrimination accuracy approached control levels (fixed illumination) at all but the shortest periods of oscillation. When the gap was introduced, accuracy increased as the period of oscillation increased, but never approached control levels. The results suggest that a fast local contrast mechanism is the primary mediator of lightness constancy for this task, but that there is also a slower mechanism that may be related to adaptation.  相似文献   

13.
The speed of processes underlying lightness constancy was studied by having observers discriminate small differences in simulated lightness under an oscillating illumination. The period of oscillation varied from 0.25 to 120 sec. The target was a 1° square which appeared for 150 msec at random intervals either directly against a uniform background or separated from the background by a 1° dark gap. When the target and background were adjacent to each other, discrimination accuracy approached control levels (fixed illumination) at all but the shortest periods of oscillation. When the gap was introduced, accuracy increased as the period of oscillation increased, but never approached control levels. The results suggest that a fast local contrast mechanism is the primary mediator of lightness constancy for this task, but that there is also a slower mechanism that may be related to adaptation.  相似文献   

14.
Three experiments were conducted in an attempt to replicate and clarify Gilchrist's (1977, 1980) experiments on the effects of depth information on judgments of achromatic surface color. Gilchrist found that coplanarity, and not retinal adjacency, was the dominant factor in determining achromatic color matches. Because such matches can be made on the basis of either brightness or lightness, we obtained judgments of both qualities. Stereopsis was added to enhance the perceived depth effect of Gilchrist's display, which was otherwise simulated closely on a high-resolution CRT. The results for lightness followed the same pattern as those of Gilchrist, but were smaller in magnitude. This discrepancy may reflect reduced extraneous lighting effects in our displays. Our results therefore agree with related studies in suggesting that lightness matches are based on relationships among coplanar surfaces. Brightness matches, however, were not influenced by perceived depth.  相似文献   

15.
Observers performed lightness matches for physically equivalent gray targets of a simultaneous lightness contrast display and displays in which both targets were on the same background. Targets either shared a common line-texture pattern with their respective backgrounds or did not. Results indicate that when targets share a line-texture pattern with their respective backgrounds, a contrast effect is obtained. However, when the target's pattern is different than the background's pattern, perceived contrast is significantly reduced and the target appears as a separate 3-D entity. This result applies to both vertically and horizontally oriented displays, to targets that are increments or decrements, and to line-texture patterns that are black or white. Line patterns that are shared by targets and backgrounds result in T-junctions that provide occlusion information. We conclude that targets and backgrounds perceived to be on separate planes because of T-junctions are less likely to be perceptually grouped together and that their luminance values are less likely to be compared with one another.  相似文献   

16.
In White's display the gray target surrounded more by black than white appears darker than the target of the same physical luminance surrounded more by white than black. Several subsequent studies have shown that this effect occurs only when the luminance of the test regions lies between the minimum and maximum luminance values of the inducing stripes. With targets either lighter or darker than both inducing stripes, the direction of the effect is reversed and the effect is known as the 'inverted' White's effect. Views differ on whether the classical and inverted White's effects are mediated by common or separate underlying mechanisms. We varied the aspect ratio of the test and inducing regions in the classical and inverted White's effects. Consistent with previously reported findings, we found that the direction of the classical effect did not depend on the amount of black or white border in immediate contact with the test patch. On the other hand, perceived lightness in the inverted White's effect was affected by such variations, suggesting that induction in classical and inverted White's configurations is governed by different mechanisms. These results confirm the critical importance of the interaction between luminance and geometric relationships in induced brightness.  相似文献   

17.
The effects of passive viewing and the practice of the control instructions, “slow rate” and “rapid rate,” on a measure of binocular rivalry (BR) control was investigated. Four groups of 8 Ss each had different amounts of passive viewing of BR followed by different amounts of control instructions to complete a total of 50 min of testing spaced over lOdays. There were increases of passive rate as long as Ss practiced only the “passive rate“ instructions. This had an effect of increasing the rapid rate and slow rate of the first control practice day. However, “passive rate” practice had no significant effect on the measure of BR control. Successive practice days of “rapid rate” and “slowrate” instructions produced an increase in rapid rate and decrease in slow rate resulting in an increase in the measure of control.  相似文献   

18.
Various demonstrations show that a target of constant luminance can be made to appear darker in perceived lightness merely by introducing an adjacent region of higher luminance. This has often been interpreted as a manifestation of contrast effects produced by lateral inhibition, a relatively local process. An alternative interpretation holds that the highest luminance in such a display serves as an anchor that defines the white level. This interpretation is global in the sense that the anchor need not be located near any particular target in order to serve as its standard. Edge integration processes have been postulated that would enable such remote comparisons, but there is controversy about the strength of these processes. We report a series of experiments in which local and global processes were assessed. Specifically, we tested whether the introduction of a higher luminance has a greater darkening effect on an adjacent target than on a remote target. We found no difference, suggesting that the darkening effect is a matter of anchoring, not contrast, and that edge integration processes required by anchoring are relatively strong.  相似文献   

19.
Carter's “signaled stopping” technique is used here under different instructions to examine two quite different cognitive phenomena during television viewing of marital interactions from feature films: a change to the cognitive state of “thinking” (rather than just watching), and the momentary perception of action “meaningful for the couple's relationship.” A variety of evidence supports the distinction and suggests directions for further applications of the technique.  相似文献   

20.
Observers made forced-choice opaque/luminous responses to targets of varying luminance and varying size presented (1) on the wall of a laboratory, (2) as a disk within an annulus, and (3) embedded within a Mondrian array presented within a vision tunnel. Lightness matches were also made for nearby opaque surfaces. The results show that the threshold luminance value at which a target begins to appear self-luminous increases with its size, defined as perceived size, not retinal size. More generally, the larger the target, the more an increase in its luminance induces grayness/blackness into the surround and the less it induces luminosity into the target, and vice versa. Corresponding to this luminosity/grayness tradeoff, there appears to be an invariant: Across a wide variety of conditions, a target begins to appear luminous when its luminance is about 1.7 times that of a surface that would appear white in the same illumination. These results show that the luminosity threshold behaves like a surface lightness value--the maximum lightness value, in fact--and is subject to the same laws of anchoring (such as the area rule proposed by Li & Gilchrist, 1999) as surface lightness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号