共查询到20条相似文献,搜索用时 15 毫秒
1.
de Freitas Renata P. Viana Jorge P. Benevides Mario R. F. Veloso Sheila R. M. Veloso Paulo A. S. 《Journal of Philosophical Logic》2003,32(4):343-355
In this paper we show that the class of fork squares has a complete orthodox axiomatization in fork arrow logic (FAL). This result may be seen as an orthodox counterpart of Venema's non-orthodox axiomatization for the class of squares in arrow logic. FAL is the modal logic of fork algebras (FAs) just as arrow logic is the modal logic of relation algebras (RAs). FAs extend RAs by a binary fork operator and are axiomatized by adding three equations to RAs equational axiomatization. A proper FA is an algebra of relations where the fork is induced by an injective operation coding pair formation. In contrast to RAs, FAs are representable by proper ones and their equational theory has the expressive power of full first-order logic. A square semantics (the set of arrows is U×U for some set U) for arrow logic was defined by Y. Venema. Due to the negative results about the finite axiomatizability of representable RAs, Venema provided a non-orthodox finite axiomatization for arrow logic by adding a new rule governing the applications of a difference operator. We address here the question of extending the type of relational structures to define orthodox axiomatizations for the class of squares. Given the connections between this problem and the finitization problem addressed by I. Németi, we suspect that this cannot be done by using only logical operations. The modal version of the FA equations provides an orthodox axiomatization for FAL which is complete in view of the representability of FAs. Here we review this result and carry it further to prove that this orthodox axiomatization for FAL also axiomatizes the class of fork squares. 相似文献
2.
We consider arrow logics (i.e., propositional multi-modal logics having three -- a dyadic, a monadic, and a constant -- modal operators) augmented with various kinds of infinite counting modalities, such as 'much more', 'of good quantity', 'many times'. It is shown that the addition of these modal operators to weakly associative arrow logic results in finitely axiomatizable and decidable logics, which fail to have the finite base property. 相似文献
3.
4.
The complexity of the satisfiability problems of various arrow logics and cylindric modal logics is determined. As is well known, relativising these logics makes them decidable. There are several parameters that can be set in such a relativisation. We focus on the following three: the number of variables involved, the similarity type and the kind of relativised models considered. The complexity analysis shows the importance and relevance of these parameters. 相似文献
5.
We investigate the expressive power of Parikh's Game Logic interpreted in Kripke structures, and show that the syntactical alternation hierarchy of this logic is strict. This is done by encoding the winning condition for parity games of rank n. It follows that Game Logic is not captured by any finite level of the modal -calculus alternation hierarchy. Moreover, we can conclude that model checking for the -calculus is efficiently solvable iff this is possible for Game Logic 相似文献
6.
Ming Xu 《Journal of Philosophical Logic》2006,35(6):599-619
We prove some embedding theorems for classical conditional logic, covering ‘finitely cumulative’ logics, ‘preferential’ logics and what we call ‘semi-monotonic’ logics. Technical tools called ‘partial frames’ and ‘frame morphisms’ in the context of neighborhood semantics are used in the proof. 相似文献
7.
8.
In this paper we consider an intuitionistic variant of the modal logic S4 (which we call IS4). The novelty of this paper is that we place particular importance on the natural deduction formulation of IS4— our formulation has several important metatheoretic properties. In addition, we study models of IS4— not in the framework of Kirpke semantics, but in the more general framework of category theory. This allows not only a more abstract definition of a whole class of models but also a means of modelling proofs as well as provability. 相似文献
9.
Michael Zakharyaschev 《Studia Logica》1997,59(3):345-358
This paper gives a characterization of those quasi-normal extensions of the modal system S4 into which intuitionistic propositional logic Int is embeddable by the Gödel translation. It is shown that, as in the normal case, the set of quasi-normal modal companions of Int contains the greatest logic, M*, for which, however, the analog of the Blok-Esakia theorem does not hold. M* is proved to be decidable and Halldén-complete; it has the disjunction property but does not have the finite model property. 相似文献
10.
This essay attempts to implement epistemic logic through a non-classical inference relation. Given that relation, an account of '(the individual) a knows that A' is constructed as an unfamiliar non-normal modal logic. One advantage to this approach is a new analysis of the skeptical argument. 相似文献
11.
Action logic of Pratt [21] can be presented as Full Lambek Calculus FL [14, 17] enriched with Kleene star *; it is equivalent
to the equational theory of residuated Kleene algebras (lattices). Some results on axiom systems, complexity and models of
this logic were obtained in [4, 3, 18]. Here we prove a stronger form of *-elimination for the logic of *-continuous action
lattices and the –completeness of the equational theories of action lattices of subsets of a finite monoid and action lattices of binary relations
on a finite universe. We also discuss possible applications in linguistics.
Presented by Jacek Malinowski 相似文献
12.
In "Doing Well Enough: Toward a Logic for Common Sense Morality", Paul McNamara sets out a semantics for a deontic logic which contains the operator It is supererogatory that. As well as having a binary accessibility relation on worlds, that semantics contains a relative ordering relation, . For worlds u, v and w, we say that u w v when v is at least as good as u according to the standards of w. In this paper we axiomatize logics complete over three versions of the semantics. We call the strongest of these logics DWE for Doing Well Enough. 相似文献
13.
In the paper (Braüner, 2001) we gave a minimal condition for the existence of a homophonic theory of truth for a modal or tense logic. In the present paper we generalise this result to arbitrary modal logics and we also show that a modal logic permits the existence of a homophonic theory of truth if and only if it permits the definition of a so-called master modality. Moreover, we explore a connection between the master modality and hybrid logic: We show that if attention is restricted to bidirectional frames, then the expressive power of the master modality is exactly what is needed to translate the bounded fragment of first-order logic into hybrid logic in a truth preserving way. We believe that this throws new light on Arthur Prior's fourth grade tense logic. 相似文献
14.
This work is divided in two papers (Part I and Part II). In Part I, we study a class of polymodal logics (herein called the class of "Rare-logics") for which the set of terms indexing the modal operators are hierarchized in two levels: the set of Boolean terms and the set of terms built upon the set of Boolean terms. By investigating different algebraic properties satisfied by the models of the Rare-logics, reductions for decidability are established by faithfully translating the Rare-logics into more standard modal logics. The main idea of the translation consists in eliminating the Boolean terms by taking advantage of the components construction and in using various properties of the classes of semilattices involved in the semantics. The novelty of our approach allows us to prove new decidability results (presented in Part II), in particular for information logics derived from rough set theory and we open new perspectives to define proof systems for such logics (presented also in Part II). 相似文献
15.
16.
试论批判性思维与逻辑的关系 总被引:8,自引:0,他引:8
“批判性思维”一词已成为当今教育界一个十分时髦的术语。心理学家、教育学家、哲学家都在讨论批判性思维。但是,什么是批判性思维?其逻辑基础是什么呢?我们认为,目前学界对此的认识有待进一步澄清。在逻辑学界,批判性思维已成为当前逻辑学教学改革和发展的一种重要方向。有学者认为,批判性思维与非形式逻辑有着密不可分的联系,甚至有人认为批判性思维与非形式逻辑两者可以不加区别交互使用。该文首先考察了心理学家、教育学家和哲学家们分别给出的批判性思维的定义,然后分析批判性思维与非形式逻辑、形式逻辑之间的相互联系与区别,进而认为形式逻辑和非形式逻辑共同构成了批判性思维的逻辑基础。 相似文献
17.
18.
The problems we deal with concern reasoning about incomplete knowledge. Knowledge is understood as ability of an ideal rational agent to make decisions about pieces of information. The formalisms we are particularly interested in are Moore's autoepistemic logic (AEL) and its variant, the logic of acceptance and rejection (AEL2). It is well-known that AEL may be seen as the nonmonotonic KD45 modal logic. The aim is to give an appropriate modal formalization for AEL2. 相似文献
19.
This work is divided in two papers (Part I and Part II). In Part I, we introduced the class of Rare-logics for which the set of terms indexing the modal operators are hierarchized in two levels: the set of Boolean terms and the set of terms built upon the set of Boolean terms. By investigating different algebraic properties satisfied by the models of the Rare-logics, reductions for decidability were established by faithfully translating the Rare-logics into more standard modal logics (some of them contain the universal modal operator).In Part II, we push forward the results from Part I. For Rare-logics with nominals (present at the level of formulae and at the level of modal expressions), we show that the constructions from Part I can be extended although it is technically more involved. We also characterize a class of standard modal logics for which the universal modal operator can be eliminated as far as satifiability is concerned. Although the previous results have a semantic flavour, we are also able to define proof systems for Rare-logics from existing proof systems for the corresponding standard modal logics. Last, but not least, decidability results for Rare-logics are established uniformly, in particular for information logics derived from rough set theory.Since this paper is the continuation of Part I, we do not recall here the definitions of Part I although we refer to them. 相似文献