首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysine vasopressin (0.03 micrograms/kg, sc) enhanced retention test performance on a one-trial step-through inhibitory avoidance task when injected into male Swiss mice 20 min before the retention test. Tests were done 48 h following training. A low dose of the vasopressin antagonist AAVP (0.01 microgram/kg, sc, 20 min prior to testing) did not significantly affect retention test performance, whereas a higher dose (0.03 microgram/kg, sc) impaired it. Neither lysine vasopressin nor AAVP when given prior to testing modified latencies to step-through of mice that had not received a footshock during training. The simultaneous administration of AAVP (0.01 microgram/kg, sc) prevented the enhancement of retention test performance induced by lysine vasopressin. The influence of lysine vasopressin on retention test performance was antagonized by the simultaneous administration of mecamylamine (5 mg/kg, sc) but not by hexamethonium (5 mg/kg, sc), atropine (0.5 mg/kg, sc), or methylatropine (0.5 mg/kg, sc). A modulatory role of vasopressin on the activity of central cholinergic nicotinic mechanisms which probably operate at the time of testing is suggested.  相似文献   

2.
Immediate post-training subcutaneous administration of lysine vasopressin (LVP, 0.003-1.00 microgram/kg) enhanced retention, whereas the vasopressin antagonist AAVP (0.01-0.30 microgram/kg) impaired it, in male Swiss mice tested 48 h after training in an inhibitory avoidance task. Both effects were dose-dependent. Neither LVP nor AAVP affected response latencies in mice not given the footshock on the training trial. The simultaneous administration of AAVP at a dose (0.01 microgram/kg) which had no effect on retention shifted the dose-response curve of LVP to the right. Nicotine (1.0-30.0 micrograms/kg, sc), a central nicotinic cholinergic agonist, also facilitated retention in a dose-related manner without affecting the retention performance of unshocked mice. The effect of nicotine was prevented by the central acting nicotinic cholinergic receptor antagonist mecamylamine (5 mg/kg, sc.). In contrast, neither hexamethonium (5 mg/kg, sc), a peripheral acting nicotinic receptor blocker, nor atropine (0.5 mg/kg, sc) or methylatropine (0.5 mg/kg, sc), two anticholinergic drugs which are known to act on muscarinic cholinergic receptors, prevented the effect of post-training nicotine. The effects of LVP and nicotine were time-dependent, suggesting that both treatments enhanced retention by influencing post-training processes involved in memory storage. Low doses of nicotine (1.50 microgram/kg, sc) or the central anticholinesterase physostigmine (35 micrograms/kg, sc) and LVP (0.003 microgram/kg, sc), which had no effect on retention when administered alone, produced a synergistic interaction when given together following training. The influence of LVP (0.03 microgram/kg, sc) on retention was prevented not only by AAVP (0.01 microgram/kg, sc) but also by mecamylamine (5 mg/kg, sc), whereas the effects of nicotine (10.0 micrograms/kg, sc) were prevented only by mecamylamine. These results suggest that the enhancement of retention induced by vasopressin is probably due to an activation of central nicotinic cholinergic mechanisms which are critical for memory formation.  相似文献   

3.
Hypertonic saline (1 ml of 0.25, 0.50, and 1.00 M NaCl, ip) facilitated retention of a one-trial, step-through inhibitory avoidance task when injected into male Swiss mice 10 min after training, as indicated by retention performance 48 h later. A similar result was obtained after a subcutaneous injection of lysine vasopressin (LVP, 0.03 microgram/kg). Neither hypertonic saline nor LVP modified latencies to step-through of mice that had not received a footshock during training. The enhancement of retention produced both by hypertonic saline and by LVP was prevented by the vasopressin receptor antagonist AAVP (0.01 microgram/kg, sc) given after training, but 10 min before the treatments. The effect of hypertonic saline was also prevented by the central acting cholinergic nicotinic receptor antagonist mecamylamine (5 mg/kg, sc). On the contrary, neither hexamethonium (5 mg/kg, sc), a peripheral acting nicotinic receptor blocker, nor atropine (0.5 mg/kg, sc) or methylatropine (0.5 mg/kg, sc), two anticholinergic drugs which are known to act on cholinergic muscarinic receptors, prevented the effect of post-training hypertonic saline. These results suggest that a peripheral osmotic stimulus, probably through an endogenous release of vasopressin, may be behaviorally significant, and are consistent with the view that vasopressin may modulate the activity of central cholinergic nicotinic mechanisms which are critical for the behavioral change observed.  相似文献   

4.
Oxytocin (OT, 0.10 microg/kg, sc) impaired retention of a one-trial step-through inhibitory avoidance task when injected into male Swiss mice 10 min after training, as indicated by retention performance 48 h later. In contrast, the immediate post-training administration of the putative oxytocin receptor antagonist d(CH(2))(5)[Tyr(Me)(2), Thr(4), Thy-NH(9)(2)] OVT (AOT, 0.30 microg/kg, sc) significantly enhanced retention performance. Neither OT nor AOT affected response latencies in mice not given footshock on the training trial, and neither the impairing effects of OT nor the enhancing effects of AOT were seen when the training-treatment interval was 180 min, suggesting that both treatments influenced memory storage. The effects of OT (0.10 microg/kg, sc) on retention were prevented by AOT (0.03 microg/kg, sc) given immediately after training, but 10 min prior to OT treatment. The central acting anticholinesterase physostigmine (35, 70, or 150 microg/kg, i.p.), but not its quaternary analogue neostigmine (150 microg/kg, i.p.), reversed the impairment of retention performance induced by OT, whereas low subeffective doses of the centrally active muscarinic cholinergic antagonist atropine (0.5 mg/kg, i.p.) or the central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg, i.p.), but not methylatropine (0.5 mg/kg, i.p.) or hexamethonium (5 mg/kg, i.p.) prevented the enhancement of retention performance caused by AOT. We suggest that oxytocin negatively modulates the activity of central cholinergic mechanisms during the posttraining period that follows an aversively motivated learning experience, leading to an impairment of retention performance of the inhibitory avoidance response.  相似文献   

5.
Post-training administration of the centrally acting muscarinic agonist oxotremorine (50.0 microgram/kg, ip) facilitated 48-hr retention, in mice, of a one-trial step-through inhibitory avoidance response. Oxotremorine-induced memory facilitation was not prevented by the simultaneous post-training administration of the central beta-adrenoceptor antagonist propranolol (2.0 mg/kg, ip). In contrast, post-training administration of atropine (0.5 mg/kg, ip), but not methylatropine (0.5 mg/kg, ip), completely prevented the facilitatory effects of the central beta-adrenoceptor agonist clenbuterol (30.0 micrograms/kg, ip) on retention. Low subeffective doses of clenbuterol (3.0 micrograms/kg, ip) and oxotremorine (6.25 or 12.5 micrograms/kg, ip) potentiated their effects and facilitated retention when given simultaneously immediately post-training. These results suggest that clenbuterol may induce memory facilitation through an increase of the release of acetylcholine in the brain. Post-training administration of a high dose of clenbuterol (1.0 mg/kg, ip) significantly impaired retention. Clenbuterol (1.0 mg/kg, ip)-induced impairment of retention was completely prevented by simultaneous post-training administration of oxotremorine (6.25, 12.5, or 50.0 micrograms/kg, ip). The centrally acting anticholinesterase physostigmine (21.5 or 68.0 micrograms/kg, ip) partially prevented clenbuterol-induced impairment of memory. The peripherally acting anticholinesterase neostigmine (68.0 micrograms/kg, ip) modified neither retention nor the amnestic effects of clenbuterol. Considered together, these findings are consistent with the view that brain muscarinic cholinergic mechanisms are involved in both the facilitatory and impairing effect of post-training clenbuterol on the modulation of memory storage.  相似文献   

6.
Immediate posttraining intraperitoneal injection of nonconvulsive doses of insulin (2-20 IU/kg) significantly impaired retention of male Swiss mice tested 24 h after training in a one-trial step-through inhibitory avoidance task. The dose-response curve showed a U-shaped form. However, of the doses tested, only 8 IU/kg was effective. Insulin did not affect response latencies in mice not given the footshock on the training trial, indicating that the actions of insulin on retention performance were not due to nonspecific proactive effects on response latencies. The impairing effects of insulin (8 IU/kg) on retention were time-dependent, which suggests that insulin impaired memory storage. The simultaneous administration of glucose (10-1000 mg/kg) antagonized, in a dose-related manner, the actions of insulin (8 IU/kg) on retention, suggesting that the hormone may have produced a hypoglycemic response leading to a decrease in CNS glucose availability with a subsequent memory impairment. Low subeffective doses of atropine (0.5 mg/kg) or mecamylamine (5 mg/kg), but not methylatropine (0.5 mg/kg) or hexamethonium (5 mg/kg), given immediately after training but 10 min before an ineffective dose of insulin (4 IU/kg), interacted with and impaired retention. The central anticholinesterase physostigmine (35 or 70 μg/kg), but not its quaternary analog neostigmine (35 or 70 μg/kg), prevented the memory impairment induced by insulin (8 IU/kg). Considered together, these findings are consistent with the view that a decrease in the CNS glucose availability impairs the synthesis and/or release of acetylcholine in brain regions critically involved in memory storage.  相似文献   

7.
Immediate post-training administration of the central acting opioid receptor antagonist naltrexone (0.01-1.00 mg/kg) facilitated 48-h retention of a one-trial inhibitory avoidance task. An inverted-U dose-response curve was obtained. In this dose range naltrexone did not significantly affect response latencies of mice not given a footshock during the training. However, higher doses of naltrexone (3.0 and 10.0 mg/kg) increased latencies of both shocked and unshocked mice. The peripheral-acting opioid receptor blocker, naltrexone methyl bromide (MR 2263) (0.01-10.00 mg/kg), did not significantly influence retention latencies of either shocked or unshocked mice. Further, MR 2263 (0.1, 1.0, or 10.0 mg/kg) did not block the retention impairment produced by concurrently administered morphine (3.0 mg/kg) or beta-endorphin (0.1 microgram/kg). These findings indicate that the effect of these agonists on memory are not due to a peripheral influence. However, MR 2263 does prevent the memory-impairing effect of both metenkephalin (1.0 microgram/kg) and leu-enkephalin (0.3 microgram/kg) on retention. Those results suggest that enkephalins affect retention through influences initiated peripherally. Thus, different sites and mechanisms of action for beta-endorphin and the enkephalins are proposed.  相似文献   

8.
Pentylenetetrazol (PTZ, 45 mg/kg, ip) impaired retention of a one-trial step-through inhibitory avoidance task when injected into male Swiss mice 10 min after training, as indicated by retention performance 48 h later. The amnestic effect of PTZ was prevented by naltrexone (0.01 or 0.10 mg/kg, ip) administered after training, but prior to PTZ-treatment. On the contrary, neither naltrexone methyl bromide (0.01, 0.10, or 10.0 mg/kg, ip), a quaternarium analog of naltrexone, nor MR2266 (0.01 or 0.10 mg/kg, ip), a putative kappa opiate receptor antagonist, modified the behavioral effects of PTZ. On the other hand, the body seizures produced by PTZ were unaffected by any of the three opiate receptor antagonists that were given before the convulsant. Taken together, these results suggest that the effects of PTZ on retention are mediated, at least in part, by opioid peptides of central origin, and rules out a possible participation of opioid peptides derived from prodynorphin-precursor molecule. Administration of beta-endorphin (0.01 or 0.10 microgram/kg, ip) 10 min prior to testing attenuate the retrograde amnesia caused by PTZ. The effect of beta-endorphin was prevented by the simultaneous administration of naltrexone (0.10 mg/kg, ip) prior to testing. Naltrexone has no effect of its own upon retrieval. These results suggest that the impairment of retention induced by PTZ is probably due, at least in part, to a release of opioid peptides in the brain during the post-training period. PTZ given after training do not affect consolidation or memory storage, as mice thus treated may retrieve the learned information when they are submitted to an appropriate neurohumoral and/or hormonal state in the test session, that is, beta-endorphin injection. Therefore, the action of PTZ would be primarily at the level of the mechanism that make stored information available for late retrieval.  相似文献   

9.
Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber for a 10-min period. The procedure was repeated twice within a 24-h interval. The difference in the exploratory activity between the first (training) and the second exposure (testing) to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of insulin (8, 20, or 80 IU/kg) impaired retention in a dose-related manner, although only the dose of 20 IU/kg of insulin produced significant effects. Thus, the dose–response curve adopted a U-shaped form. Insulin (20 IU/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of insulin on retention were time dependent, suggesting an action on memory storage. An ineffective dose (8 IU/kg) of insulin given together with an ineffective dose of a central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) or with a central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg) interacted to impair retention. In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, interacted with the subeffective dose of insulin on retention. The impairing effects of insulin (20 IU/kg) on retention were reversed by the simultaneous administration of physostigmine (70 μg/kg) but not neostigmine (70 μg/kg). We suggest that insulin impairs memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through a decrement of brain acetylcholine synthesis.  相似文献   

10.
Posttraining intraperitoneal administration of phlorizin (3.0–300.0 μg/kg), a competitive inhibitor of glucose transport from blood to brain, facilitated 48-h retention, in male Swiss mice, of a one-trial step-through inhibitory avoidance task. The dose–response curve was an inverted-U shape. Phlorizin did not increase the retention latencies of mice that had not received a foot shock during training. The effects of phlorizin (30.0 μg/kg) on retention were time dependent, and the administration of phlorizin (30.0 μg/kg) 5 or 10 min prior to the retention test did not affect the retention performance of mice given posttraining injections of saline or phlorizin (30.0 μg/kg). These findings indicate that phlorizin influenced memory storage, but not memory retrieval. Finally, the simultaneous administration of phlorizin (3.0–300.0 μg/kg, ip) antagonized, in a dose-related manner, the memory impairment induced by insulin (8 IU/kg, ip). Taken together, the results show that phlorizin enhance retention acting as a “glucose-like substance” although the mechanism(s) of this enhancement is unknown.  相似文献   

11.
Post-training administration of the opioid receptor antagonist naloxone (0.1 mg/kg) facilitated 48-hr retention, in mice, of a one-trial step-through inhibitory avoidance response. The naloxone-induced memory facilitation was blocked in animals given the selective brain-noradrenergic neurotoxin DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) (50.0 mg/kg, ip) 7 days before training. Pretreatment with the norepinephrine-uptake inhibitor desmethylimipramine (10.0 mg/kg, ip, 30 min), but not with the serotonin-uptake inhibitor fluoxetine (5.0 mg/kg, ip, 30 min), prevented this antagonism. The simultaneous administration of the central beta-adrenoceptor blocker l-propranolol (2.0 mg/kg, ip), also blocked the effects of naloxone on memory. The effects of naloxone were not blocked by d-propranolol (2.0 mg/kg, ip), the peripheral beta-adrenoceptor blocker sotalol (2.0 mg/kg, ip), the alpha-adrenoceptor blocker phenoxybenzamine (10.0 mg/kg, ip), or the predominantly peripheral alpha-adrenoceptor blocker phentolamine (10.0 mg/kg, ip). These findings suggest that central beta-adrenergic mechanisms are involved in the effects of naloxone on memory. Naloxone (0.1 mg/kg, ip) potentiated the effects of the central beta-adrenoceptor agonist clenbuterol (0.001-1.00 mg/kg, ip), which, when administered alone, facilitates or impairs retention as a function of the dose injected. The simultaneous administration of beta-endorphin (0.1 micrograms/kg, ip) exerted effects opposite to those elicited by naloxone, that is, shifted the dose-response curve of clenbuterol to the right. Considered together, these findings are consistent with the view that the facilitatory action of naloxone on memory results from the release of central beta-adrenergic mechanisms from an inhibition induced by opioid peptides released during or immediately after training.  相似文献   

12.
Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber, for 10 min. The procedure was repeated twice with a 24-h interval. The difference in the exploratory activity between the first (training) and the second (testing) exposures to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of glucose (10–300 mg/kg) enhanced retention in a dose-related manner, although only the dose of 30 mg/kg of glucose produced significant effects. Thus, the dose–response curve adopted an inverted U-shaped form. Glucose (30 mg/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of glucose on retention were time-dependent, suggesting an action on memory storage. The memory-improving actions of glucose were prevented by the simultaneous administration of both the central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) and by the central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg). In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, prevented the effects of glucose on retention. Low subeffective doses of glucose (10 mg/kg) and the central anticholinesterase physostigmine (35 μg/kg), but not neostigmine (35 μg/kg), given together, act synergistically and facilitated retention. We suggest that glucose modulates memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through an enhancement of brain acetylcholine synthesis and/or its release.  相似文献   

13.
In the present study, the possible role of nicotinic acetylcholine (nACh) receptors of the ventral tegmental area (VTA) on morphine-state-dependent learning was studied in adult male Wistar rats. As a model of memory, a step-through type passive avoidance task was used. All animals were bilaterally implanted with chronic cannulae in the VTA, trained using a 1 mA foot shock, and tested 24 h after training to measure step-through latency. Post-training subcutaneous (s.c.) injection of morphine (0.5–5 mg/kg) dose-dependently reduced the step-through latency, showing morphine-induced amnesia. Amnesia induced by post-training morphine was significantly reversed by pre-test administration of morphine (2.5–5 mg/kg, s.c.) and induced morphine-state-dependent learning. Pre-test injection of nicotine (0.25–1 μg/rat) into the VTA plus an ineffective dose of morphine (0.5 mg/kg) significantly restored the memory retrieval. It should be noted that pre-test intra-VTA injection of the same doses of nicotine (0.25–1 μg/rat) alone cannot affect memory retention. Furthermore, pre-test intra-VTA injection of the nicotinic acetylcholine receptor antagonist, mecamylamine (1–3 μg/rat) 5 min before the administration of morphine (5 mg/kg, s.c.) dose-dependently inhibited morphine-state-dependent learning. Pre-test injection of the higher dose of mecamylamine (3 μg/rat) into the VTA by itself decreased the step-through latency and induced amnesia. On the other hand, mecamylamine (0.5 and 1 μg/rat, intra-VTA) reversed the effect of nicotine on morphine response. The results indicate that nACh receptors in the VTA participate in the modulation of morphine-induced recovery of memory, on the test day.  相似文献   

14.
Male Swiss mice were tested 24 h after training in a one-trial step-through inhibitory avoidance task. Low subeffective doses of -(+)-glucose (10 mg/kg, ip), but not its stereoisomer -(−)-glucose (30 mg/kg, ip), administered immediately after training, and AF-DX 116 (0.3 mg/kg, ip), a presynaptic muscarinic receptor antagonist, given 10 min after training, interact to improve retention. Insulin (8 IU/kg, ip) impaired retention when injected immediately after training, and the effects were reversed, in a dose-related manner, by AF-DX 116 (0.3, 1.0, or 3.0 mg/kg, ip) administered 10 min following insulin. Since AF-DX 116 possibly blocks autoreceptors mediating the inhibition of acetylcholine release from cholinergic nerve terminals, the present data support the view that changes in the central nervous system glucose availability, subsequent to modification of circulating glucose levels, influence the activity of central cholinergic mechanisms involved in memory storage of an inhibitory avoidance response in mice.  相似文献   

15.
Despite its increasing use as an animal model of memory deficit in human dementia, relatively few studies have attempted to assess the memory processes involved in the anticholinergic-induced impairment of passive avoidance retention. In the present experiments, the influence of scopolamine administered prior to or immediately following training on 24-h retention of step-through passive avoidance was studied in NMRI mice. In low doses (0.3-3.0 mg/kg ip) pretraining administration (-5 min) of scopolamine induced a very strong amnesia. Post-training scopolamine induced a significant effect only at the highest dose tested (30 mg/kg). In a retention test of longer than normal duration (600 vs 180 s), which resulted in a more favorable comparison value in the control group, an intermediate post-training dose (10 mg/kg) induced a small effect which approached significance; a finding which may account for conflicting reports in the literature concerning the ability of scopolamine to induce a post-training deficit. The pretraining effect does not appear to have been solely the result of state-dependent learning; scopolamine (3 mg/kg) administered before both the training and test sessions induced a deficit of approximately the same magnitude as that found when administered before training or before testing only. The results indicate that scopolamine can induce a small post-trial effect, presumably through an influence on consolidation processes. The much larger effect of pretrial scopolamine, however, indicates a primary influence on processes related to information acquisition. Together with findings from the literature, the present experiments suggest that scopolamine-induced amnesia partially, but not completely, models the memory deficits of human dementia.  相似文献   

16.
Posttraining administration of the -enantiomer of the competitive inhibitor of nitric oxide synthase,NG-nitro- -arginine methyl ester ( -NAME, 3–100 mg/kg, ip), impaired 48-h retention of a one-trial step-through inhibitory shock-avoidance task in male Swiss mice. The effects were dose-dependent and were not observed when the -enantiomer ( -NAME, 3–100 mg/kg, ip) was injected instead of -NAME. Retention latencies of mice that had not received a footshock during training were not affected by -NAME. The memory impairment produced by -NAME was time-dependent, suggesting an action on memory storage. The effects of -NAME on memory were overcome by the injection of -(but not -)arginine (300 mg/kg, ip) along with the inhibitor. Considered together, these findings suggest that the -arginine/nitric oxide pathway may be involved in memory storage of an inhibitory avoidance response in mice.  相似文献   

17.
Rats tested in a step-through inhibitory avoidance task were administered hypertonic saline (2 ml of 0.25. 0.5, and 1.0 M intraperitoneally) or arginine vasopressin (1.0, 2.0, and 4.0 micrograms) injected subcutaneously (sc) after the training trial where the rats received a mild footshock (0.2 mA, 3 s). Both hypertonic saline and vasopressin produced significant increases in latency to reenter 24 h later. These treatments failed to increase reentry latencies in animals that received the same procedure but no shock. The facilitation of inhibitory avoidance produced by hypertonic saline was reversed by sc administration of 25 micrograms of the vasopressor (V-1) vasopressin antagonist, dPtyr(Me)AVP. The results suggest that the endogenous release of vasopressin can be behaviorally significant in situations of acute homeostatic challenge.  相似文献   

18.
In the present research the effect of the noncompetitive N-methyl-d-aspartate receptor antagonist MK-801 and ethanol combinations on memory consolidation and the involvement of GABAergic mechanisms in this effect were investigated in CD1 mice injected intraperitoneally with the drugs immediately or 120 min after training in a one-trial inhibitory avoidance apparatus and tested for retention 24 h later. The results showed that (a) the retention performances of mice were impaired in a dose-dependent manner by immediate posttraining MK-801 (0.2 and 0.3, but not 0.1 mg/kg) and ethanol (1 and 2, but not 0.5 g/kg) administrations; (b) an otherwise ineffective dose of MK-801 (0.1 mg/kg) enhanced the deleterious effect exerted by ethanol (1 and 2 g/kg); (c) an otherwise ineffective dose of muscimol (0.5 mg/kg) enhanced, while otherwise ineffective doses of picrotoxin (0.25 mg/kg) or bicuculline (0.1 mg/kg) antagonized, this effect; and (d) no effect was observed when the treatments were carried out 120 min after training, suggesting that the effects observed following immediate posttraining administrations were due to the influence on the consolidation of memory. From these experiments it is evident that (a) MK-801 enhances ethanol's effects on memory consolidation and (b) GABAergic mechanisms are involved in this effect.  相似文献   

19.
Chicks 5 days old received intraperitoneal injections of nimodipine 30 min before training on either a visual discrimination task (0, 0.5, 1.0, or 5.0 mg/kg) or a test of separation-induced distress vocalizations (0, 0.5, or 2.5 mg/kg). Chicks receiving 1.0 mg/kg nimodipine made significantly fewer visual discrimination errors than vehicle controls by trials 41-60, but did not differ from controls 24 h later. Chicks in the 5 mg/kg group made significantly more errors when compared to controls both during acquisition of the task and during retention. Nimodipine did not alter separation-induced distress vocalizations at any of the doses tested, suggesting that nimodipine's effects on learning cannot be attributed to a reduction in separation distress. These data indicate that nimodipine's facilitation of learning in young subjects is dose dependent, but nimodipine failed to enhance retention.  相似文献   

20.
Scopolamine effects on memory retention in mice: a model of dementia?   总被引:4,自引:0,他引:4  
Scopolamine-treated normal young human subjects exhibit memory dysfunctions analogous to those observed in demented patients. The dysfunctions are reversible by physostigmine but not by d-amphetamine which suggests that the memory impairment is specifically related to reduced cholinergic transmission caused by scopolamine. Scopolamine-induced amnesia has been proposed as a model for dementia where reduced cholinergic function is the suspected cause. We report seven experiments in young adult mice which examine scopolamine's effects on memory retention and whether its amnestic effects are specifically blocked by cholinergic agonists or cholinomimetics. Young adult mice were trained to avoid footshock in a T maze and their retention tested 1 week after training. Pretraining subcutaneous injection of scopolamine improved retention scores of "undertrained" mice at a dose of 0.01 mg/kg but impaired at a dose of 0.1 mg/kg. Post-training injection showed no effect at 0.01 mg/kg, enhanced retention scores at 0.1 mg/kg, and impaired at 1.0 mg/kg. The impairment by 1.0 mg/kg was blocked by injection 45 min post-training of each of two cholinergic drugs but was also counteracted by six drugs which act upon five other neural systems (catecholamine, serotonin, glycine, GABA, and hormonal). When scopolamine was injected 40 min pretraining, and each of eight drugs was injected immediately after training, the amnestic effect of scopolamine was only partially counteracted. This suggests that scopolamine impaired acquisition, in addition to some impairment of memory processing. This was confirmed by a direct study of acquisition rates of the avoidance response; 0.1 mg/kg of scopolamine impaired acquisition. The overall results indicate that pretraining administration of scopolamine impairs learning and to some degree memory processing. Counteracting scopolamine-induced amnesia, by either pretraining or post-training drug administration, is not specific to the cholinergic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号