首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three experiments are reported that test the hypothesis that under certain conditions programming time is a function of the directional accuracy demand of a response, directional accuracy being quantified by the minimal angle subtended at the point of movement initiation by the circular targets within the response. Subjects in three simple reaction time experiments were required to tap a single target or a series of circular targets as rapidly as possible with a hand-held stylus. Experiments 1 and 3 showed that the subtended angle (SA) of a response can have a more powerful effect on programming time, as indexed by reaction time and premotor time, than the number of movement parts in the response. The results of Experiment 2 revealed that the locus of the directional accuracy effect was SA and not target size or movement distance. In all three experiments, response SA was a better predictor of programming time than was number of movement parts, target size, movement distance, movement time, and average movement velocity. The findings support the notion that constraints placed upon movement initiation by the directional accuracy demand of the task can play an important role in determining the length of the programming process.  相似文献   

2.
Three experiments are reported that test the hypothesis that under certain conditions programming time is a function of the directional accuracy demand of a response, directional accuracy being quantified by the minimal angle subtended at the point of movement initiation by the circular targets within the response. Subjects in three simple reaction time experiments were required to tap a single target or a series of circular targets as rapidly as possible with a hand-held stylus. Experiments 1 and 3 showed that the subtended angle (SA) of a response can have a more powerful effect on programming time, as indexed by reaction time and premotor time, than the number of movement parts in the response. The results of Experiment 2 revealed that the locus of the directional accuracy effect was SA and not target size or movement distance. In all three experiments, response SA was a better predictor of programming time than was number of movement parts, target size, movement distance, movement time, and average movement velocity. The findings support the notion that constraints placed upon movement initiation by the directional accuracy demand of the task can play an important role in determining the length of the programming process.  相似文献   

3.
Increases in reaction time (RT) as a function of response complexity have been shown to differ between simple and choice RT tasks. Of interest in the present study was whether the influence of response complexity on RT depends on the extent to which movements are programmed in advance of movement initiation versus during execution (i.e., online). The task consisted of manual aiming movements to one or two targets (one- vs. two-element responses) under simple and choice RT conditions. The probe RT technique was employed to assess attention demands during RT and movement execution. Simple RT was greater for the two- than for the single-target responses but choice RT was not influenced by the number of elements. In both RT tasks, reaction times to the probe increased as a function of number of elements when the probe occurred during movement execution. The presence of the probe also caused an increase in aiming errors in the simple but not choice RT task. These findings indicated that online programming was occurring in both RT tasks. In the simple RT task, increased executive control mediated the integration between response elements through the utilization of visual feedback to facilitate the implementation of the second element.  相似文献   

4.
Increases in reaction time (RT) as a function of response complexity have been shown to differ between simple and choice RT tasks. Of interest in the present study was whether the influence of response complexity on RT depends on the extent to which movements are programmed in advance of movement initiation versus during execution (i.e., online). The task consisted of manual aiming movements to one or two targets (one- vs. two-element responses) under simple and choice RT conditions. The probe RT technique was employed to assess attention demands during RT and movement execution. Simple RT was greater for the two- than for the single-target responses but choice RT was not influenced by the number of elements. In both RT tasks, reaction times to the probe increased as a function of number of elements when the probe occurred during movement execution. The presence of the probe also caused an increase in aiming errors in the simple but not choice RT task. These findings indicated that online programming was occurring in both RT tasks. In the simple RT task, increased executive control mediated the integration between response elements through the utilization of visual feedback to facilitate the implementation of the second element.  相似文献   

5.
As some states allow motorists to use hands-free cell phones only while driving, this study was done to examine some braking responses to see if conversing on these two types of cell phones affects quick responding. College-age drivers (n=25) completed reaction time trials in go/no-go situations under three conditions: control (no cell phone or conversation), and conversing on hands-free and hand-held cell phones. Their task involved moving the right foot from one pedal to another as quickly as possible in response to a visual signal in a lab setting. Significantly slower reaction times, movement times, and total response times were found for both cell phone conditions than for the control but no differences between hands-free and hand-held phone conditions. These findings provide additional support that talking on cell phones, regardless if it is hands-free or hand-held, reduces speed of information processing.  相似文献   

6.
Reaction time prior to starting a 2-mm amplitude aimed movement was studied as a function to target size and experimental procedure. Consistent with a report by Klapp, choice reaction time increased as target size decreased when the visual signal that initiated the reaction time interval also indicated which of two targets was to be hit. This result implies response programming during the reaction time interval, with more programming time for slower movements to smaller targets. By contrast, in a simple reaction time procedure, there was no effect of target size on reaction time, suggesting that the response can be programmed in advance when the appropriate target is precued. This provided a control for speed-accuracy trade-off, supporting the programming interpretation of the choice reaction time result. In another condition in which both targets could be viewed while waiting for the auditory signal that initiated the reaction time interval and indicated which target to hit, choice reaction time was independent of target size provided that both possible targets on each trial were of the same size. The overall results suggest that response programs include both spatial and temporal information, and that parallel programming of different spatial goals is possible provided that the responses are of the same duration.  相似文献   

7.
The sit-to-stand movement strategy of each subject is different depending on whether the subjects perform voluntary movements or have concrete instructions (i.e., stand quickly), which is strongly reflected in the performance of each sit-to-stand movement phase. Thirty young-adult male subjects participated in this study (M age=20.7 yr; SD=2.6). Subjects performed the two movements from a chair height adjusted to the subject's lower thigh length. In the self-administered (SA) condition, subjects voluntarily stood up from the chair without instruction, and in the assigned-ordered (AO) condition subjects stood up from the chair as fast as possible. Vertical floor reaction force and electromyograms of the rectus femoris and tibialis anterior muscles were measured, and 15 parameters were selected. The parameters in the phase between the peak value of the floor reaction force and completion of the movement was highly reliable regardless of instruction. However, other parameters had different reliabilities between the instruction conditions. In particular, the parameters in the phase between starting the movement and the peak value of the floor reaction force under the assigned-order were higher than those of the self-administered condition. Moreover, the sit-to-stand movement was conducted faster in the assigned-order condition during the phase between starting the movement and buttocks-syneresis, and the peak value of the floor reaction force and completion of the movement. From the above, in the assigned-order condition "as fast as possible," the anteflexion bending movement and extension of knee and trunk joints were faster, and anteflexion movement was repeated more similarly under a concrete instruction such as moving as fast as possible.  相似文献   

8.
The preparation and on-line control of short, rapid sequential aiming responses were studied in 3 experiments. Participants (N = 12 in Experiments 1 and 2, and 20 in Experiment 3) produced 3-segment responses (a) within self-initiation, simple reaction time (RT), and choice RT paradigms (Experiment 1); (b) without visual feedback under self-initiation conditions (Experiment 2); and (c) with and without visual feedback under simple RT conditions (Experiment 3). In all conditions in which participants initiated movement in response to an external imperative signal, the 2nd response segment was performed consistently slower than preceding and succeeding response segments. That pattern of segmental movement times was found whether or not visual feedback was available but was not evident when participants self-initiated their responses with or without visual feedback. The findings rule out the possibility that subjects' use of visual feedback is responsible for the slowing of the 2nd response segment under RT conditions and suggest that the programming of rapid sequential aiming responses can be distributed in pre- and postinitiation intervals.  相似文献   

9.
The goal of the present study was to determine the combined effects of movement velocity and duration on motor programming. Subjects were submitted to a two-choice reaction time task that could be completed by aiming movements differing in the mean velocity at which they were to be produced as well as by their movement time. The results of the present study indicate that, in each pair of responses used, the responses having the higher mean velocity were initiated faster than those having the lower mean velocity. Contrary to Spijkers' (1989) study, the different movement time pairings did not modify the effect of movement velocity on response programming time. Moreover, the same pattern of results was observed whether or not the subjects were permitted to visually guide their ongoing movement. Thus, Spijkers' proposition, that the type of control one may use to guide an aiming movement needs to be determined before movement initiation can take place, was not confirmed.  相似文献   

10.
The goal of the present study was to determine the combined effects of movement velocity and duration on motor programming. Subjects were submitted to a two-choice reaction time task that could be completed by aiming movements differing in the mean velocity at which they were to be produced as well as by their movement time. The results of the present study indicate that, in each pair of responses used, the responses having the higher mean velocity were initiated faster that those having the lower mean velocity. Contrary to Spijkers' (1989) study, the different movement time pairings did not modify the effect of movement velocity on response programming time. Moreover, the same pattern of results was observed whether or not the subjects were permitted to visually guide their ongoing movement. Thus, Spijkers' proposition, that the type of control one may use to guide an aiming movement needs to be determined before movement initiation can take place, was not confirmed.  相似文献   

11.
The relationship between the rate of force development and components of fractionated reaction time were investigated in the present study. Subjects (N=9) were administered extensive practice before being required to produce 98N of isometric force on a hand dynamometer at a maximal rate, at 20% slower than maximal, and at 40% slower than maximal. Repeated measures analysis of variance followed by non-orthogonal Dunn planned comparisons demonstrated that pre-motor time and reaction time increased as similar peak forces were produced over longer durations. No significant differences in motor times were revealed. These data suggested that the manner in which force is expressed relates to the complexity of motor programming. The increased requirement of coordinating alpha-gamma coactivation, as well as the increased need for rate coding as a process underlying force development at slower contraction rates, are discussed in relation to programming complexity.  相似文献   

12.
The variable that affect motor programming time may be studied by changing the nature of the response and measuring the subsequent changes in reaction time (RT). One notion of motor programming suggests that aiming responses with reduced target size and/or increased target amplitude require more "complex" motor programs that require longer RTs. In a series of five experiments which movement time (MT) was experimentally varied target size neither influences RT when the movement amplitude was 2 or 30 cm nor when the target sizes differed by as much as a factor of 16:1. Increasing the movement amplitude from 15 to 30 cm also had no influence on RT. Movement time, however, did affect RT, with 200-msec movements having longer RTs than 120-msec movements. Target size and movement amplitude did not appear to be factors that influence programming time or program complexity.  相似文献   

13.
The aim of this study was to investigate the comparative cost of accuracy constraints in direction or amplitude for movement regulation. The attentional cost is operationally defined as the amount of disturbance created in a secondary task by the simultaneous execution of a pointing task in direction or amplitude. The cost is expressed in terms of modifications in response to a secondary task, consisting of a foot-pedal release in response to an auditory stimulus (probe). The probe was introduced during the programming portion or the first, middle, or last portion of the pointing movement. The independent variables were the requirements of the task: direction or amplitude, and the moments of occurrence of the probe. Subjects were submitted to eight experimental conditions: (1) simple foot reaction time to a buzzer; (2) single directional task; (3) single amplitude task; (4) dual directional task (i.e. directional task with probe); (5) dual amplitude task (i.e. amplitude task with probe); (6) retest of foot simple reaction time; (7) retest of single directional task; and (8) retest of single amplitude task. Regulation in direction was more attention-demanding than regulation in distance in terms of programming. During pointing in amplitude, probe RT increased monotonically from start to end of movement execution, whereas directional pointing did not lead to any significant probe RT changes. These results emphasize the specific attentional loads for directional and amplitude pointing tasks, hence the involvement of different central nervous system mechanisms for the programming and regulation of the directional and amplitude parameters of pointing movements.  相似文献   

14.
The present experiments were conducted to investigate the relationship between age and the response programming operations underlying the execution of a ballistic motor act. In an initial experiment, two separate age groups of female subjects (mean ages of 21.9 and 69.1 years) performed aimed-movements of the right hand and arm in one of two movement directions (left or right), under preprogramming, programming, and reprogramming conditions. These operations were examined by providing advance information about the direction of an impending movement and manipulating the degree of correspondence between the advance information and a subsequent reaction signal. The results indicated that subjects in the older age group reacted and moved more slowly than subjects in the younger age group, however, there was no interaction between age and the three response programming conditions. Such findings indicated that the basic operational characteristics of these processes remain unaffected with advancing chronological age. Also, irrespective of age and response programming condition, responses to the right were initiated faster than responses to the left. This difference was especially accentuated for reprogramming. A second experiment, using a new stimulus-response mapping, replicated the left-right difference in initiation time; this difference was reversed when the left hand was used to execute the designated movement, indicating that this finding is indeed a response programming phenomenon. Further discussion focused on the possible operations underlying reprogramming.  相似文献   

15.
The attention-demand value of the Rorschach stimuli was investigated by measuring free looking time elicited by each card. Reports of content were not given by Ss. There were significant differences between cards in amount of looking which they elicited. This was closely related to judged complexity of the cards (r = .78) and response productivity of the cards under normal administration of the Rorschach test (r = .72). A comparison of looking times under two instructions, non-defensive and defensive, showed that the instructional variable tended to produce greater differences in looking time for some cards than for others. Cards low in complexity showed relatively longer looking times under the defensive conditions.  相似文献   

16.
Movement preparation of bimanual asymmetric movements takes more time than bimanual symmetric movements in choice reaction-time conditions. This bimanual asymmetric cost may be caused by increased processing demands on any stage of movement preparation. The authors tested the contributions of each stage of movement preparation to the asymmetric cost by using the additive factors method. This involved altering the stimulus contrast, response compatibility, and response complexity. These manipulations changed the processing demands on stimulus identification, response selection, and response programming, respectively. Any manipulation with a larger reaction time cost than control suggests that stage contributes to the bimanual asymmetric cost. The bimanual asymmetric cost was larger for incompatible stimuli, which supports that response selection contributes to the bimanual asymmetric cost.  相似文献   

17.
Studies indicate that rapid sequential movements are preprogrammed and that preprogramming increases with complexity, but more complex sequences that require on-line programming have seldom been studied. The purpose of this investigation was to determine whether on-line programming occurs in a 7-target sequence in which there is a unique target constraint and if so, to determine how different task constraints affect the distribution of additional programming. Subjects contacted seven targets with a hand-held stylus as quickly as possible while maintaining a 90% hit rate. Initiation- and execution-timing patterns and movement kinematics were measured to determine when the additional programming took place. Results indicated that additional programming occurred before initiation and during movement to the first target when the constraint required more spatial accuracy (small target). A different type of unique target (a triple hit of one target) caused the additional programming to occur on-line one or two segments before its execution. Different positions of the unique target also affected timing patterns. Results were discussed in terms of: (1) capacity of processing; (2) control of movement variance; and (3) mean velocity as a programmed parameter in sequential aiming movements.  相似文献   

18.
Subjects were required to perform discrete finger movements in accordance with a pre-arranged sequence of instructions. In all cases, any movement made by any finger was recorded by means of a constant-speed kymograph equipped with levers designed to record separately the movements of the individual fingers. This experiment was carried out under three conditions: (a) with no vision of the hand; (b) with direct vision of the hand; and (c) with the hand presented in mirror-image. It was found that, whereas deprivation of visual control was without effect on the efficiency of finger movements, presentation of the hand in mirror-image gave rise to significant increases in reaction time of three fingers and to an increase in the percentages of prior and substitute movements of other digits. Phenomena akin to depersonalisation were reported in some cases. It was also found that the rank order of mean reaction times of the five digits was approximately constant under all conditions and that the two fingers with the shortest reaction times were preceded by the fewest movements of other digits. These two digits were also the most frequently moved in advance when movements of other digits were requested and it is suggested that they have a certain “signpost function” in guiding identification of the remaining fingers. Some implications of these results for an understanding of “finger agnosia” are briefly indicated in an Appendix.  相似文献   

19.
The question of whether changes seen in simple reaction time (SRT) as a function of response complexity (i.e., number of movement parts) should be considered as differences in the time needed to centrally program a motor response was addressed. Using a large-scale tapping response, 14 subjects contacted from one to five targets positioned in a straight line, while a second group of 14 subjects executed 90 degrees changes in direction in striking the targets. Results revealed that mean SRT and mean premotor time increased linearly as the number of movement parts increased, regardless of whether changes in movement direction had to be programmed, with the greatest increase occurring between one-, and two-part responses. Increases in motor time were not sufficient to account for the sizeable SRT effect. These findings support the position of increased central programming time for more complex responses, and also help establish some of the boundaries of the complexity effect.  相似文献   

20.
《Acta psychologica》1987,66(1):21-35
The relationship between fractionated reaction time components and response force was studied in a simple reaction time task. Subjects squeezed a force transducer between the right thumb and index finger. Three conditions with 5, 25, and 50% of the maximum voluntary isometric force were investigated in a counterbalanced order. The results showed that premotor reaction time was negatively related to peak force amplitude, while motor reaction time remained constant across force conditions. An interpretation of the effect on premotor reaction time in terms of a shift in the speed-accuracy trade-off function was refuted. Although the data were consistent with a two-stage programming model, it was concluded that differences in motor nerve fiber conduction velocity as a function of response force could explain the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号