首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of fitting unidimensional item response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that have a strong dimension but also contain minor nuisance dimensions. Fitting a unidimensional model to such multidimensional data is believed to result in ability estimates that represent a combination of the major and minor dimensions. We conjecture that the underlying dimension for the fitted unidimensional model, which we call the functional dimension, represents a nonlinear projection. In this article we investigate 2 issues: (a) can a proposed nonlinear projection track the functional dimension well, and (b) what are the biases in the ability estimate and the associated standard error when estimating the functional dimension? To investigate the second issue, the nonlinear projection is used as an evaluative tool. An example regarding a construct of desire for physical competency is used to illustrate the functional unidimensional approach.  相似文献   

2.
Linear, nonlinear, and nonparametric moderated latent variable models have been developed to investigate possible interaction effects between a latent variable and an external continuous moderator on the observed indicators in the latent variable model. Most moderation models have focused on moderators that vary across persons but not across the indicators (e.g., moderators like age and socioeconomic status). However, in many applications, the values of the moderator may vary both across persons and across indicators (e.g., moderators like response times and confidence ratings). Indicator-level moderation models are available for categorical moderators and linear interaction effects. However, these approaches require respectively categorization of the continuous moderator and the assumption of linearity of the interaction effect. In this article, parametric nonlinear and nonparametric indicator-level moderation methods are developed. In a simulation study, we demonstrate the viability of these methods. In addition, the methods are applied to a real data set pertaining to arithmetic ability.  相似文献   

3.
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In this article, we propose a broad class of semiparametric Bayesian SEMs, which allow mixed categorical and continuous manifest variables while also allowing the latent variables to have unknown distributions. In order to include typical identifiability restrictions on the latent variable distributions, we rely on centered Dirichlet process (CDP) and CDP mixture (CDPM) models. The CDP will induce a latent class model with an unknown number of classes, while the CDPM will induce a latent trait model with unknown densities for the latent traits. A simple and efficient Markov chain Monte Carlo algorithm is developed for posterior computation, and the methods are illustrated using simulated examples, and several applications.  相似文献   

4.
A general linear latent trait model for continuous item responses is described. The special unidimensional case for continuous item responses is Joreskog's (1971) model of congeneric item responses. In the context of the unidimensional case model for continuous item responses the concepts of item and test information functions, specific objectivity, item bias, and reliability are discussed; also the application of the model to test construction is shown. Finally, the correspondence with latent trait theory for dichotomous item responses is discussed.  相似文献   

5.
The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate ordinal items. Time-dependent latent variables are linked with an autoregressive model. Simulation results have shown composite likelihood estimators to have a small amount of bias and mean square error and as such they are feasible alternatives to full maximum likelihood. Model selection criteria developed for composite likelihood estimation are used in the applications. Furthermore, lower-order residuals are used as measures-of-fit for the selected models.  相似文献   

6.
We consider models which combine latent class measurement models for categorical latent variables with structural regression models for the relationships between the latent classes and observed explanatory and response variables. We propose a two-step method of estimating such models. In its first step, the measurement model is estimated alone, and in the second step the parameters of this measurement model are held fixed when the structural model is estimated. Simulation studies and applied examples suggest that the two-step method is an attractive alternative to existing one-step and three-step methods. We derive estimated standard errors for the two-step estimates of the structural model which account for the uncertainty from both steps of the estimation, and show how the method can be implemented in existing software for latent variable modelling.  相似文献   

7.
This paper uses log-linear models with latent variables (Hagenaars, in Loglinear Models with Latent Variables, 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for cognitive diagnosis, new alternatives to modeling the functional relationship between attribute mastery and the probability of a correct response are discussed.  相似文献   

8.
9.
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the proposed model. Markov chain Monte Carlo methods for obtaining Bayesian estimates and their standard error estimates, highest posterior density intervals, and a PP p value are developed. Results obtained from two simulation studies are reported to respectively reveal the empirical performance of the proposed Bayesian estimation in analyzing complex nonlinear SEMs, and in analyzing nonlinear SEMs with the normal assumption of the exogenous latent variables violated. The proposed methodology is further illustrated by a real example. Detailed interpretation about the interaction terms is presented.  相似文献   

10.
Models specifying indirect effects (or mediation) and structural equation modeling are both popular in the social sciences. Yet relatively little research has compared methods that test for indirect effects among latent variables and provided precise estimates of the effectiveness of different methods.

This simulation study provides an extensive comparison of methods for constructing confidence intervals and for making inferences about indirect effects with latent variables. We compared the percentile (PC) bootstrap, bias-corrected (BC) bootstrap, bias-corrected accelerated (BC a ) bootstrap, likelihood-based confidence intervals (Neale & Miller, 1997), partial posterior predictive (Biesanz, Falk, and Savalei, 2010), and joint significance tests based on Wald tests or likelihood ratio tests. All models included three reflective latent variables representing the independent, dependent, and mediating variables. The design included the following fully crossed conditions: (a) sample size: 100, 200, and 500; (b) number of indicators per latent variable: 3 versus 5; (c) reliability per set of indicators: .7 versus .9; (d) and 16 different path combinations for the indirect effect (α = 0, .14, .39, or .59; and β = 0, .14, .39, or .59). Simulations were performed using a WestGrid cluster of 1680 3.06GHz Intel Xeon processors running R and OpenMx.

Results based on 1,000 replications per cell and 2,000 resamples per bootstrap method indicated that the BC and BC a bootstrap methods have inflated Type I error rates. Likelihood-based confidence intervals and the PC bootstrap emerged as methods that adequately control Type I error and have good coverage rates.  相似文献   

11.
Merkle  Edgar C.  Furr  Daniel  Rabe-Hesketh  Sophia 《Psychometrika》2019,84(3):802-829
Psychometrika - Typical Bayesian methods for models with latent variables (or random effects) involve directly sampling the latent variables along with the model parameters. In high-level software...  相似文献   

12.
Convergence of the expectation-maximization (EM) algorithm to a global optimum of the marginal log likelihood function for unconstrained latent variable models with categorical indicators is presented. The sufficient conditions under which global convergence of the EM algorithm is attainable are provided in an information-theoretic context by interpreting the EM algorithm as alternating minimization of the Kullback–Leibler divergence between two convex sets. It is shown that these conditions are satisfied by an unconstrained latent class model, yielding an optimal bound against which more highly constrained models may be compared.  相似文献   

13.
Liu  Yang  Hannig  Jan  Pal Majumder  Abhishek 《Psychometrika》2019,84(3):701-718
Psychometrika - In applications of item response theory (IRT), it is often of interest to compute confidence intervals (CIs) for person parameters with prescribed frequentist coverage. The...  相似文献   

14.
This paper presents a new polychoric instrumental variable (PIV) estimator to use in structural equation models (SEMs) with categorical observed variables. The PIV estimator is a generalization of Bollen’s (Psychometrika 61:109–121, 1996) 2SLS/IV estimator for continuous variables to categorical endogenous variables. We derive the PIV estimator and its asymptotic standard errors for the regression coefficients in the latent variable and measurement models. We also provide an estimator of the variance and covariance parameters of the model, asymptotic standard errors for these, and test statistics of overall model fit. We examine this estimator via an empirical study and also via a small simulation study. Our results illustrate the greater robustness of the PIV estimator to structural misspecifications than the system-wide estimators that are commonly applied in SEMs. Kenneth Bollen gratefully acknowledges support from NSF SES 0617276, NIDA 1-RO1-DA13148-01, and DA013148-05A2. Albert Maydeu-Olivares was supported by the Department of Universities, Research and Information Society (DURSI) of the Catalan Government, and by grant BSO2003-08507 from the Spanish Ministry of Science and Technology. We thank Sharon Christ, John Hipp, and Shawn Bauldry for research assistance. The comments of the members of the Carolina Structural Equation Modeling (CSEM) group are greatly appreciated. An earlier version of this paper under a different title was presented by K. Bollen at the Psychometric Society Meetings, June, 2002, Chapel Hill, North Carolina.  相似文献   

15.
Latent variable modeling is a popular and flexible statistical framework. Concomitant with fitting latent variable models is assessment of how well the theoretical model fits the observed data. Although firm cutoffs for these fit indexes are often cited, recent statistical proofs and simulations have shown that these fit indexes are highly susceptible to measurement quality. For instance, a root mean square error of approximation (RMSEA) value of 0.06 (conventionally thought to indicate good fit) can actually indicate poor fit with poor measurement quality (e.g., standardized factors loadings of around 0.40). Conversely, an RMSEA value of 0.20 (conventionally thought to indicate very poor fit) can indicate acceptable fit with very high measurement quality (standardized factor loadings around 0.90). Despite the wide-ranging effect on applications of latent variable models, the high level of technical detail involved with this phenomenon has curtailed the exposure of these important findings to empirical researchers who are employing these methods. This article briefly reviews these methodological studies in minimal technical detail and provides a demonstration to easily quantify the large influence measurement quality has on fit index values and how greatly the cutoffs would change if they were derived under an alternative level of measurement quality. Recommendations for best practice are also discussed.  相似文献   

16.
We develop a latent variable selection method for multidimensional item response theory models. The proposed method identifies latent traits probed by items of a multidimensional test. Its basic strategy is to impose an \(L_{1}\) penalty term to the log-likelihood. The computation is carried out by the expectation–maximization algorithm combined with the coordinate descent algorithm. Simulation studies show that the resulting estimator provides an effective way in correctly identifying the latent structures. The method is applied to a real dataset involving the Eysenck Personality Questionnaire.  相似文献   

17.
Bounds are established for log odds ratios (log cross-product ratios) involving pairs of items for item response models. First, expressions for bounds on log odds ratios are provided for one-dimensional item response models in general. Then, explicit bounds are obtained for the Rasch model and the two-parameter logistic (2PL) model. Results are also illustrated through an example from a study of model-checking procedures. The bounds obtained can provide an elementary basis for assessment of goodness of fit of these models. Any opinions expressed in this publication are those of the authors and not necessarily those of the Educational Testing Service. The authors thank Dan Eignor, Matthias von Davier, Lydia Gladkova, Brian Junker, and the three anonymous reviewers for their invaluable advice. The authors gratefully acknowledge the help of Kim Fryer with proofreading.  相似文献   

18.
Scores in ability tests administered to students in grades 4–9 were simultaneously factor-analyzed within twelve gender by grade groups. Gender and grade differences in means and variances were studied for five latent ability factors according to a hierarchical model and compared with means and variances in the observed scores.
Girls had higher means than boys in a general ability factor (G), in a residual general speed factor (Gs') and in a residual factor of numerical facility (N'). Boys were higher in a residual vocabulary factor (V') and most of all in a residual spatial visualization factor (Vz'). Boys had larger variances than girls in N' and Gs'. In general the differences in means and variances were in the same direction for the closest corresponding observed scores, but some striking discrepancies between latent and observed scores were found. As a rule, the discrepancies were due to the complexity of the tests where one factor could compensate for another.
In the discussion it was pointed out that some of the differences found were likely to have changed between the testing in the late 1950s and the present. Nevertheless the demonstration of the divergence between analyses of latent vs. observed scores remains valid.  相似文献   

19.
Statistical methodology for handling omitted variables is presented in a multilevel modeling framework. In many nonexperimental studies, the analyst may not have access to all requisite variables, and this omission may lead to biased estimates of model parameters. By exploiting the hierarchical nature of multilevel data, a battery of statistical tools are developed to test various forms of model misspecification as well as to obtain estimators that are robust to the presence of omitted variables. The methodology allows for tests of omitted effects at single and multiple levels. The paper also introduces intermediate-level tests; these are tests for omitted effects at a single level, regardless of the presence of omitted effects at a higher level. A simulation study shows, not surprisingly, that the omission of variables yields bias in both regression coefficients and variance components; it also suggests that omitted effects at lower levels may cause more severe bias than at higher levels. Important factors resulting in bias were found to be the level of an omitted variable, its effect size, and sample size. A real data study illustrates that an omitted variable at one level may yield biased estimators at any level and, in this study, one cannot obtain reliable estimates for school-level variables when omitted child effects exist. However, robust estimators may provide unbiased estimates for effects of interest even when the efficient estimators fail, and the one-degree-of-freedom test helps one to understand where the problem is located. It is argued that multilevel data typically contain rich information to deal with omitted variables, offering yet another appealing reason for the use of multilevel models in the social sciences. This research was supported by the National Academy of Education/Spencer Foundation and the National Science Foundation, Grant Number SES-0436274.  相似文献   

20.
Differential item functioning (DIF), referring to between-group variation in item characteristics above and beyond the group-level disparity in the latent variable of interest, has long been regarded as an important item-level diagnostic. The presence of DIF impairs the fit of the single-group item response model being used, and calls for either model modification or item deletion in practice, depending on the mode of analysis. Methods for testing DIF with continuous covariates, rather than categorical grouping variables, have been developed; however, they are restrictive in parametric forms, and thus are not sufficiently flexible to describe complex interaction among latent variables and covariates. In the current study, we formulate the probability of endorsing each test item as a general bivariate function of a unidimensional latent trait and a single covariate, which is then approximated by a two-dimensional smoothing spline. The accuracy and precision of the proposed procedure is evaluated via Monte Carlo simulations. If anchor items are available, we proposed an extended model that simultaneously estimates item characteristic functions (ICFs) for anchor items, ICFs conditional on the covariate for non-anchor items, and the latent variable density conditional on the covariate—all using regression splines. A permutation DIF test is developed, and its performance is compared to the conventional parametric approach in a simulation study. We also illustrate the proposed semiparametric DIF testing procedure with an empirical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号