首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The posterior parietal cortex has been traditionally associated with coordinate transformations necessary for interaction with the environment and with visual-spatial attention. More recently, involvement of posterior parietal cortex in other cognitive functions such as working memory and task learning has become evident. Neurophysiological experiments in non-human primates and human imaging studies have revealed neural correlates of memory and learning at the single neuron and at the brain network level. During working memory, posterior parietal neurons continue to discharge and to represent stimuli that are no longer present. This activation resembles the responses of prefrontal neurons, although important differences have been identified in terms of the ability to resist stimulation by distracting stimuli, which is more evident in the prefrontal than the posterior parietal cortex. Posterior parietal neurons also become active during tasks that require the organization of information into larger structured elements and their activity is modulated according to learned context-dependent rules. Neural correlates of learning can be observed in the mean discharge rate and spectral power of neuronal spike trains after training to perform new task sets or rules. These findings demonstrate the importance of posterior parietal cortex in brain networks mediating working memory and learning.  相似文献   

2.
Rats were trained on an eight-arm radial maze task using a procedure that provides for an assessment of both working and reference memory. Following training, rats received parietal cortex, medial prefrontal cortex, visual cortex, or nucleus basalis magnocellularis lesions. Rats with visual cortex lesions showed no change in performance on either working or reference memory. Rats with parietal cortex lesions displayed a temporary deficit in reference, but no deficit on working memory. Animals with medial prefrontal cortex lesions showed a temporary deficit on both working and reference memory. Rats with extensive lateral frontal and parietal cortex depletion of acetylcholinesterase following nucleus basalis magnocellularis lesions had a marked disruption only of reference but not of working memory. It is concluded that neocortex and possibly the cholinergic projections to neocortex play an important role in mediating reference memory.  相似文献   

3.
《Brain and cognition》2009,69(3):271-283
A multitude of cognitive functions can easily be tested by a number of relatively simple saccadic eye movement tasks. This approach has been employed extensively with patient populations to investigate the functional deficits associated with psychiatric disorders. Neurophysiological studies in non-human primates performing the same tasks have begun to provide us with insights into the neural mechanisms underlying many cognitive functions. Here, we review studies that have investigated single neuron activity in the superior colliculus (see glossary), frontal eye field, supplementary eye field, dorsolateral prefrontal cortex, anterior cingulate (see glossary) cortex and lateral intraparietal area associated with the performance of visually guided saccades, anti-saccades and memory-guided saccades in awake behaving monkeys.  相似文献   

4.
A multitude of cognitive functions can easily be tested by a number of relatively simple saccadic eye movement tasks. This approach has been employed extensively with patient populations to investigate the functional deficits associated with psychiatric disorders. Neurophysiological studies in non-human primates performing the same tasks have begun to provide us with insights into the neural mechanisms underlying many cognitive functions. Here, we review studies that have investigated single neuron activity in the superior colliculus (see glossary), frontal eye field, supplementary eye field, dorsolateral prefrontal cortex, anterior cingulate (see glossary) cortex and lateral intraparietal area associated with the performance of visually guided saccades, anti-saccades and memory-guided saccades in awake behaving monkeys.  相似文献   

5.
Spatial information processing takes place in different brain regions that receive converging inputs from several sensory modalities. Because of our own movements—for example, changes in eye position, head rotations, and so forth—unimodal sensory representations move continuously relative to one another. It is generally assumed that for multisensory integration to be an orderly process, it should take place between stimuli at congruent spatial locations. In the monkey posterior parietal cortex, the ventral intraparietal (VIP) area is specialized for the analysis of movement information using visual, somatosensory, vestibular, and auditory signals. Focusing on the visual and tactile modalities, we found that in area VIP, like in the superior colliculus, multisensory signals interact at the single neuron level, suggesting that this area participates in multisensory integration. Curiously, VIP does not use a single, invariant coordinate system to encode locations within and across sensory modalities. Visual stimuli can be encoded with respect to the eye, the head, or halfway between the two reference frames, whereas tactile stimuli seem to be prevalently encoded relative to the body. Hence, while some multisensory neurons in VIP could encode spatially congruent tactile and visual stimuli independently of current posture, in other neurons this would not be the case. Future work will need to evaluate the implications of these observations for theories of optimal multisensory integration.Edited by: Marie-Hélène Giard and Mark Wallace  相似文献   

6.
Reference frames in mental rotation   总被引:1,自引:0,他引:1  
Four experiments are reported that investigate whether images or reference frames are transformed during a mental rotation task. In all experiments a display of four identical letters (P1) was presented at either +90 degrees or -90 degrees from upright, and subjects had to decide whether the letters were normal or mirror-image reflections. A single letter (P2) was then presented 100 ms later in a variable orientation with the same task instructions. Reaction times to P2 were assessed to determine whether an image of P2 was rotated to upright or whether an internal reference frame was rotated into congruence with P2 from the orientation of P1. The results as a whole suggest that transformations of P2 can be initiated either relative to upright or relative to the orientation of P1. They further indicate that the probability of using each reference orientation can be changed by procedural variations. The findings are most parsimoniously interpreted as suggesting that mental rotation involves the transformation of reference frames rather than the transformation of template-like representations.  相似文献   

7.
苏得权  曾红  陈骐  叶浩生 《心理学报》2016,(12):1499-1506
相关线索能够诱发药物依赖者的心理渴求,而健康人不会对相关线索产生心理渴求。15名海洛因成瘾者和12名没有任何物质滥用的健康被试参与实验,收集了他们在观看相关线索与对照线索时的脑神经活动。结果发现,药物线索能够诱发戒断者更多脑区的活动,包括扣带回和楔前叶。两组被试在对照动作线索刺激诱发作用下,其颞叶、顶叶均出现了较为一致的活动。在用药动作线索诱发作用下,戒断组双侧颞中回、双侧顶下小叶、左侧顶上小叶和右侧额下回显示出显著活动,并且与对照动作线索激活脑区一致;健康组被试除枕叶-颞叶联合区外,没有出现显著的脑区活动。以上结果表明,用药动作线索诱发了海洛因戒断者颞中回、顶下小叶、额下回等镜像神经系统的活动,这些脑区对不同类型的相关线索十分敏感,它们可能通过对用药动作的心理模拟,参与了用药动作线索的快速自动化加工。  相似文献   

8.
In monkeys and rats, neural activity patterns during learning are reactivated during subsequent periods of rest or sleep. According to the reactivation–consolidation account, this process underlies the consolidation of memories. Brain imaging studies have extended these findings to humans during sleep, but not yet, during rest. Here, we show that learning-related reactivation also occurs in humans during rest. During functional MRI-scanning, participants trained on a perceptuomotor task flanked by rest periods. During training, we found robust activity in the superior parietal cortex. During post-training rest, this same area reactivated. We also found a link between parietal reactivation and learning. Activity in superior parietal cortex was associated with learning during training, and a control group that did not train on the perceptuomotor task did not show any difference between the pre- and post-training rest blocks in this region. These findings indicate that, during rest, reactivation also occurs in humans. This process may contribute to consolidation of perceptuomotor memories.  相似文献   

9.
Human self-consciousness depends on the metarepresentation of mental and bodily states as one's own mental and bodily states. First-person-perspective taking is not sufficient, but necessary for human self-consciousness. To assign a first-person-perspective is to center one's own multimodal experiential space upon one's own body, thus operating in an egocentric reference frame. The brain regions involved in assigning first-person-perspective comprise medial prefrontal, medial parietal and lateral temporoparietal cortex. These empirical findings complement recent neurobiologically oriented theories of self-consciousness which focus on the relation between the subject and his/her environment by supplying a neural basis for its key components.  相似文献   

10.
The regional specificity and functional significance of learning-dependent synaptogenesis within physiologically defined regions of the adult motor cortex are described. In comparison to rats in a motor activity control group, rats trained on a skilled reaching task exhibited an areal expansion of wrist and digit movement representations within the motor cortex. No expansion of hindlimb representations was seen. This functional reorganization was restricted to the caudal forelimb area, as no differences in the topography of movement representations were observed within the rostral forelimb area. Paralleling the physiological changes, trained animals also had significantly more synapses per neuron than controls within layer V of the caudal forelimb area. No differences in the number of synapses per neuron were found in either the rostral forelimb or hindlimb areas. This is the first demonstration of the co-occurrence of functional and structural plasticity within the same cortical regions and provides strong evidence that synapse formation may play a role in supporting learning-dependent changes in cortical function.  相似文献   

11.
隋南  匡培梓 《心理学报》1992,25(1):82-90
本研究的目的是探讨隔区或皮质顶叶在大鼠空间认知加工中的作用。实验观察到隔区或皮质顶叶损毁大鼠Morris迷宫学习或记忆作业成绩显著低于控制组,并发现隔区损毁大鼠主要采用与皮质顶叶或控制组不同的“非国类”搜索策略。搜索策略的差异提示:隔区和皮质顶叶在大鼠图认知加工系统中处于不同的功能层次,隔区具有更重要的作用。  相似文献   

12.
Results are reported for experiments that examined eye movements directed toward recently cued objects. In 1 experiment participants were slower to initiate saccades toward the earlier location of an object that had been cued, even though the cued object had subsequently moved away from that location. Other experiments involved exploring the reference frame within which the inhibited eye movements are encoded. These experiments revealed that the eye movement that is inhibited is encoded in an oculocentric-rather than an environmental-reference frame. However, simple detection as indexed by manual keypress responses is encoded in an environmental reference frame. The results have implications for inhibition of return, for the link between eye movements and attention, and for the nature of the spatial reference frames in which both covert and overt movements of attention are encoded.  相似文献   

13.
Human research has shown that lesions of the parietal cortex disrupt spatial information processing, specifically topological information. Similar findings have been found in non-humans. It has been difficult to determine homologies between human and non-human mnemonic mechanisms for spatial information processing because methodologies and neuropathology differ. The first objective of the present study was to adapt a previously established human task for rats. The second objective was to better characterize the role of parietal cortex (PC) and dorsal hippocampus (dHPC) for topological spatial information processing. Rats had to distinguish whether a ball inside a ring or a ball outside a ring was the correct, rewarded object. After rats reached criterion on the task (>95%) they were randomly assigned to a lesion group (control, PC, and dHPC). Animals were then re-tested. Post-surgery data show that controls were 94% correct on average, dHPC rats were 89% correct on average, and PC rats were 56% correct on average. The results from the present study suggest that the parietal cortex, but not the dHPC processes topological spatial information. The present data are the first to support comparable topological spatial information processes of the parietal cortex in humans and rats.  相似文献   

14.
Tracing the connections from brain functions to children's cognitive development and education is a major goal of modern neuroscience. We performed the first meta-analysis of functional magnetic resonance imaging (fMRI) data obtained over the past decade (1999-2008) on more than 800 children and adolescents in three core systems of cognitive development and school learning: numerical abilities, reading, and executive functions (i.e. cognitive control). We ran Activation Likelihood Estimation (ALE) meta-analyses to obtain regions of reliable activity across all the studies. The results indicate that, unlike results usually reported for adults, children primarily engage the frontal cortex when solving numerical tasks. With age, there may be a shift from reliance on the frontal cortex to reliance on the parietal cortex. In contrast, the frontal, temporo-parietal and occipito-temporal regions at work during reading in children are very similar to those reported in adults. The executive frontal regions are also consistent with the imaging literature on cognitive control in adults, but the developmental comparison between children and adolescents demonstrates a key role of the anterior insular cortex (AIC) with an additional right AIC involvement in adolescents.  相似文献   

15.
The goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information.  相似文献   

16.
Morphological changes in the frontoparietal cortex were assessed in rats that exhibited deficits in a go/no go alternation task due to electrolytic lesion of the basal forebrain. Cortical area, laminar thickness, neuronal density, and soma area were examined in frontal, hindlimb, forelimb, and parietal areas of the cortex. Quantitative morphological analysis of the frontoparietal cortex in lesioned rats revealed a decrease in laminar thickness due to reduced soma size in particular cortical laminae. Neuronal density was not affected. These effects were present in all cortical areas examined and most pronounced in laminae II-III. Similar morphological changes were observed in the same cortical areas following lesions of the basal forebrain made with ibotenic acid, allowing a discrimination of lesion effects from those induced by damage to fibers of passage or differential behavioral testing. Lesions of the basal forebrain have previously been shown to produce both behavioral deficits and changes in cortical cholinergic activity. The cortical morphological changes observed in the present study following basal forebrain lesion provide further evidence for the importance of ascending cholinergic inputs to the cortex and their role in learning and memory.  相似文献   

17.
The basis function theory of spatial representations explains how neurons in the parietal cortex can perform nonlinear transformations from sensory to motor coordinates. The authors present computer simulations showing that unilateral parietal lesions leading to a neuronal gradient in basis function maps can account for the behavior of patients with hemineglect, including (a) neglect in line cancellation and line bisection experiments; (b) neglect in multiple frames of reference simultaneously; (c) relative neglect, a form of what is sometime called object-centered neglect; and (d) neglect without optic ataxia. Contralateral neglect arises in the model because the lesion produces an imbalance in the salience of stimuli that is modulated by the orientation of the body in space. These results strongly support the basis function theory for spatial representations in humans and provide a computational model of hemineglect at the single-cell level.  相似文献   

18.
Inhibition Accompanies Reference-Frame Selection   总被引:2,自引:0,他引:2  
Spatial relational terms are ambiguous because they can be defined by different and sometimes conflicting frames of reference. Previous research has suggested that multiple reference frames are simultaneously active before a reference frame is selected. Two experiments examined the on-line selection of a reference frame to determine whether it is assisted by inhibition. These experiments used a negative-priming paradigm in which access to a reference frame was assessed on trial n when that reference frame was either available but not selected or not available on trial n – 1. Significant negative priming was observed; it operated along the axis of the reference frame, encompassing both endpoints. In addition, reference-frame selection seems to be independent of object selection. We cast these findings within the view of negative priming as an inhibitory mechanism, and discuss their implications for the use of spatial relations.  相似文献   

19.
Locomotion,incidental learning,and the selection   总被引:2,自引:0,他引:2  
In three experiments, we examined the effects of locomotion and incidental learning on the formation of spatial memories. Participants learned the locations of objects in a room and then made judgments of relative direction, using their memories (e.g., "Imagine you are standing at the clock, facing the jar. Point to the book"). The experiments manipulated the number of headings experienced, the amount of interaction with the objects, and whether the participants were informed that their memories of the layout would be tested. When participants were required to maintain a constant body orientation during learning (Experiment 1), they represented the layout in terms of a single reference direction parallel to that orientation. When they were allowed to move freely in the room (Experiment 2), they seemed to use two orthogonal reference axes aligned with the walls of the enclosing room. Extensive movement under incidental learning conditions (Experiment 3) yielded a mixture of these two encoding strategies across participants. There was no evidence that locomotion, interaction with objects, or incidental learning led to the formation of spatial memories that differed from those formed from static viewing.  相似文献   

20.
Fifty years ago the neurologist MacDonald Critchley observed that parietal cortex damage impaired temporal as well as spatial experience. Whereas the physiological understanding of space has since advanced, the same cannot be said of time. However, in a novel study, recording from single neurons in the macaque, Leon and Shadlen show that a region of the parietal cortex appears to encode time. The area in which these neurons reside also contains spatially selective neurons and overlaps with the area recently reported to contain number neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号