首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we reported a strong right visual field/left hemisphere advantage for motion processing in deaf signers and a slight reverse asymmetry in hearing nonsigners (Bosworth & Dobkins, 1999). This visual field asymmetry in deaf signers may be due to auditory deprivation or to experience with a visual-manual language, American Sign Language (ASL). In order to separate these two possible sources, in this study we added a third group, hearing native signers, who have normal hearing and have learned ASL from their deaf parents. As in our previous study, subjects performed a direction-of-motion discrimination task at different locations across the visual field. In addition to investigating differences in left vs right visual field asymmetries across subject groups, we also asked whether performance differences exist for superior vs inferior visual fields and peripheral vs central visual fields. Replicating our previous study, a robust right visual field advantage was observed in deaf signers, but not in hearing nonsigners. Like deaf signers, hearing signers also exhibited a strong right visual field advantage, suggesting that this effect is related to experience with sign language. These results suggest that perceptual processes required for the acquisition and comprehension of language (motion processing in the case of ASL) are recruited by the left, language-dominant, hemisphere. Deaf subjects also exhibited an inferior visual field advantage that was significantly larger than that observed in either hearing group. In addition, there was a trend for deaf subjects to perform relatively better on peripheral than on central stimuli, while both hearing groups showed the reverse pattern. Because deaf signers differed from hearing signers and nonsigners along these domains, the inferior and peripheral visual field advantages observed in deaf subjects is presumably related to auditory deprivation. Finally, these visual field asymmetries were not modulated by attention for any subject group, suggesting they are a result of sensory, and not attentional, factors.  相似文献   

2.
Perception of American Sign Language (ASL) handshape and place of articulation parameters was investigated in three groups of signers: deaf native signers, deaf non-native signers who acquired ASL between the ages of 10 and 18, and hearing non-native signers who acquired ASL as a second language between the ages of 10 and 26. Participants were asked to identify and discriminate dynamic synthetic signs on forced choice identification and similarity judgement tasks. No differences were found in identification performance, but there were effects of language experience on discrimination of the handshape stimuli. Participants were significantly less likely to discriminate handshape stimuli drawn from the region of the category prototype than stimuli that were peripheral to the category or that straddled a category boundary. This pattern was significant for both groups of deaf signers, but was more pronounced for the native signers. The hearing L2 signers exhibited a similar pattern of discrimination, but results did not reach significance. An effect of category structure on the discrimination of place of articulation stimuli was also found, but it did not interact with language background. We conclude that early experience with a signed language magnifies the influence of category prototypes on the perceptual processing of handshape primes, leading to differences in the distribution of attentional resources between native and non-native signers during language comprehension.  相似文献   

3.
Previous studies of cerebral asymmetry for the perception of American Sign Language (ASL) have used only static representations of signs; in this study we present moving signs. Congenitally deaf, native ASL signers identified moving signs, static representations of signs, and English words. The stimuli were presented rapidly by motion picture to each visual hemifield. Normally hearing English speakers also identified the English words. Consistent with previous findings, both the deaf and the hearing subjects showed a left-hemisphere advantage to the English words; likewise, the deaf subjects showed a right hemisphere advantage to the statically presented signs. With the moving signs, the deaf showed no lateral asymmetry. The shift from right dominance to a more balanced hemispheric involvement with the change from static to moving signs is consistent with Kimura's position that the left hemisphere predominates in the analysis of skilled motor sequencing (Kimura 1976). The results also indicate that ASL may be more bilaterally represented than is English and that the spatial component of language stimuli can greatly influence lateral asymmetries.  相似文献   

4.
Previous findings have demonstrated that hemispheric organization in deaf users of American Sign Language (ASL) parallels that of the hearing population, with the left hemisphere showing dominance for grammatical linguistic functions and the right hemisphere showing specialization for non-linguistic spatial functions. The present study addresses two further questions: first, do extra-grammatical discourse functions in deaf signers show the same right-hemisphere dominance observed for discourse functions in hearing subjects; and second, do discourse functions in ASL that employ spatial relations depend upon more general intact spatial cognitive abilities? We report findings from two right-hemisphere damaged deaf signers, both of whom show disruption of discourse functions in absence of any disruption of grammatical functions. The exact nature of the disruption differs for the two subjects, however. Subject AR shows difficulty in maintaining topical coherence, while SJ shows difficulty in employing spatial discourse devices. Further, the two subjects are equally impaired on non-linguistic spatial tasks, indicating that spared spatial discourse functions can occur even when more general spatial cognition is disrupted. We conclude that, as in the hearing population, discourse functions involve the right hemisphere; that distinct discourse functions can be dissociated from one another in ASL; and that brain organization for linguistic spatial devices is driven by its functional role in language processing, rather than by its surface, spatial characteristics.  相似文献   

5.
We investigated the relative role of the left versus right hemisphere in the comprehension of American Sign Language (ASL). Nineteen lifelong signers with unilateral brain lesions [11 left hemisphere damaged (LHD) and 8 right hemisphere damaged (RHD)] performed three tasks, an isolated single-sign comprehension task, a sentence-level comprehension task involving simple one-step commands, and a sentence-level comprehension task involving more complex multiclause/multistep commands. Eighteen of the participants were deaf, one RHD subject was hearing and bilingual (ASL and English). Performance was examined in relation to two factors: whether the lesion was in the right or left hemisphere and whether the temporal lobe was involved. The LHD group performed significantly worse than the RHD group on all three tasks, confirming left hemisphere dominance for sign language comprehension. The group with left temporal lobe involvement was significantly impaired on all tasks, whereas each of the other three groups performed at better than 95% correct on the single sign and simple sentence comprehension tasks, with performance falling off only on the complex sentence comprehension items. A comparison with previously published data suggests that the degree of difficulty exhibited by the deaf RHD group on the complex sentences is comparable to that observed in hearing RHD subjects. Based on these findings we hypothesize (i) that deaf and hearing individuals have a similar degree of lateralization of language comprehension processes and (ii) that language comprehension depends primarily on the integrity of the left temporal lobe.  相似文献   

6.
In two studies, we find that native and non-native acquisition show different effects on sign language processing. Subjects were all born deaf and used sign language for interpersonal communication, but first acquired it at ages ranging from birth to 18. In the first study, deaf signers shadowed (simultaneously watched and reproduced) sign language narratives given in two dialects, American Sign Language (ASL) and Pidgin Sign English (PSE), in both good and poor viewing conditions. In the second study, deaf signers recalled and shadowed grammatical and ungrammatical ASL sentences. In comparison with non-native signers, natives were more accurate, comprehended better, and made different kinds of lexical changes; natives primarily changed signs in relation to sign meaning independent of the phonological characteristics of the stimulus. In contrast, non-native signers primarily changed signs in relation to the phonological characteristics of the stimulus independent of lexical and sentential meaning. Semantic lexical changes were positively correlated to processing accuracy and comprehension, whereas phonological lexical changes were negatively correlated. The effects of non-native acquisition were similar across variations in the sign dialect, viewing condition, and processing task. The results suggest that native signers process lexical structural automatically, such that they can attend to and remember lexical and sentential meaning. In contrast, non-native signers appear to allocate more attention to the task of identifying phonological shape such that they have less attention available for retrieval and memory of lexical meaning.  相似文献   

7.
To identify neural regions that automatically respond to linguistically structured, but meaningless manual gestures, 14 deaf native users of American Sign Language (ASL) and 14 hearing non-signers passively viewed pseudosigns (possible but non-existent ASL signs) and non-iconic ASL signs, in addition to a fixation baseline. For the contrast between pseudosigns and baseline, greater activation was observed in left posterior superior temporal sulcus (STS), but not in left inferior frontal gyrus (BA 44/45), for deaf signers compared to hearing non-signers, based on VOI analyses. We hypothesize that left STS is more engaged for signers because this region becomes tuned to human body movements that conform the phonological constraints of sign language. For deaf signers, the contrast between pseudosigns and known ASL signs revealed increased activation for pseudosigns in left posterior superior temporal gyrus (STG) and in left inferior frontal cortex, but no regions were found to be more engaged for known signs than for pseudosigns. This contrast revealed no significant differences in activation for hearing non-signers. We hypothesize that left STG is involved in recognizing linguistic phonetic units within a dynamic visual or auditory signal, such that less familiar structural combinations produce increased neural activation in this region for both pseudosigns and pseudowords.  相似文献   

8.
Visual abilities in deaf individuals may be altered as a result of auditory deprivation and/or because the deaf rely heavily on a sign language (American Sign Language, or ASL). In this study, we asked whether attentional abilities of deaf subjects are altered. Using a direction of motion discrimination task in the periphery, we investigated three aspects of spatial attention: orienting of attention, divided attention, and selective attention. To separate influences of auditory deprivation and sign language experience, we compared three subject groups: deaf and hearing native signers of ASL and hearing nonsigners. To investigate the ability to orient attention, we compared motion thresholds obtained with and without a valid spatial precue, with the notion that subjects orient to the stimulus prior to its appearance when a precue is presented. Results suggest a slight advantage for deaf subjects in the ability to orient spatial attention. To investigate divided attention, we compared motion thresholds obtained when a single motion target was presented to thresholds obtained when the motion target was presented among confusable distractors. The effect of adding distractors was found to be identical across subject groups, suggesting that attentional capacity is not altered in deaf subjects. Finally, to investigate selective attention, we compared performance for a single, cued motion target with that of a cued motion target presented among distractors. Here, deaf, but not hearing, subjects performed better when the motion target was presented among distractors than when it was presented alone, suggesting that deaf subjects are more affected by the presence of distractors. In sum, our results suggest that attentional orienting and selective attention are altered in the deaf and that these effects are most likely due to auditory deprivation as opposed to sign language experience.  相似文献   

9.
Sign language displays all the complex linguistic structure found in spoken languages, but conveys its syntax in large part by manipulating spatial relations. This study investigated whether deaf signers who rely on a visual-spatial language nonetheless show a principled cortical separation for language and nonlanguage visual-spatial functioning. Four unilaterally brain-damaged deaf signers, fluent in American Sign Language (ASL) before their strokes, served as subjects. Three had damage to the left hemisphere and one had damage to the right hemisphere. They were administered selected tests of nonlanguage visual-spatial processing. The pattern of performance of the four patients across this series of tests suggests that deaf signers show hemispheric specialization for nonlanguage visual-spatial processing that is similar to hearing speaking individuals. The patients with damage to the left hemisphere, in general, appropriately processed visual-spatial relationships, whereas, in contrast, the patient with damage to the right hemisphere showed consistent and severe visual-spatial impairment. The language behavior of these patients was much the opposite, however. Indeed, the most striking separation between linguistic and nonlanguage visual-spatial functions occurred in the left-hemisphere patient who was most severely aphasic for sign language. Her signing was grossly impaired, yet her visual-spatial capacities across the series of tests were surprisingly normal. These data suggest that the two cerebral hemispheres of congenitally deaf signers can develop separate functional specialization for nonlanguage visual-spatial processing and for language processing, even though sign language is conveyed in large part via visual-spatial manipulation.  相似文献   

10.
Previous studies indicate that hearing readers sometimes convert printed text into a phonological form during silent reading. The experiments reported here investigated whether second-generation congenitally deaf readers use any analogous recoding strategy. Fourteen congenitally and profoundly deaf adults who were native signers of American Sign Language (ASL) served as subjects. Fourteen hearing people of comparable reading levels were control subjects. These subjects participated in four experiments that tested for the possibilities of (a) recoding into articulation, (b) recoding into fingerspelling, (c) recoding into ASL, or (d) no recoding at all. The experiments employed paradigms analogous to those previously used to test for phonological recoding in hearing populations. Interviews with the deaf subjects provided supplementary information about their reading strategies. The results suggest that these deaf subjects as a group do not recode into articulation or fingerspelling, but do recode into sign.  相似文献   

11.
This investigation examined whether access to sign language as a medium for instruction influences theory of mind (ToM) reasoning in deaf children with similar home language environments. Experiment 1 involved 97 deaf Italian children ages 4-12 years: 56 were from deaf families and had LIS (Italian Sign Language) as their native language, and 41 had acquired LIS as late signers following contact with signers outside their hearing families. Children receiving bimodal/bilingual instruction in LIS together with Sign-Supported and spoken Italian significantly outperformed children in oralist schools in which communication was in Italian and often relied on lipreading. Experiment 2 involved 61 deaf children in Estonia and Sweden ages 6-16 years. On a wide variety of ToM tasks, bilingually instructed native signers in Estonian Sign Language and spoken Estonian succeeded at a level similar to age-matched hearing children. They outperformed bilingually instructed late signers and native signers attending oralist schools. Particularly for native signers, access to sign language in a bilingual environment may facilitate conversational exchanges that promote the expression of ToM by enabling children to monitor others' mental states effectively.  相似文献   

12.
This study investigated serial recall by congenitally, profoundly deaf signers for visually specified linguistic information presented in their primary language, American Sign Language (ASL), and in printed or fingerspelled English. There were three main findings. First, differences in the serial-position curves across these conditions distinguished the changing-state stimuli from the static stimuli. These differences were a recency advantage and a primacy disadvantage for the ASL signs and fingerspelled English words, relative to the printed English words. Second, the deaf subjects, who were college students and graduates, used a sign-based code to recall ASL signs, but not to recall English words; this result suggests that well-educated deaf signers do not translate into their primary language when the information to be recalled is in English. Finally, mean recall of the deaf subjects for ordered lists of ASL signs and fingerspelled and printed English words was significantly less than that of hearing control subjects for the printed words; this difference may be explained by the particular efficacy of a speech-based code used by hearing individuals for retention of ordered linguistic information and by the relatively limited speech experience of congenitally, profoundly deaf individuals.  相似文献   

13.
In order to reveal the psychological representation of movement from American Sign Language (ASL), deaf native signers and hearing subjects unfamiliar with sign were asked to make triadic comparisons of movements that had been isolated from lexical and from grammatically inflected signs. An analysis of the similarity judgments revealed a small set of physically specifiable dimensions that accounted for most of the variance. The dimensions underlying the perception of lexical movement were in general different from those underlying inflectional movement, for both groups of subjects. Most strikingly, deaf and hearing subjects significantly differed in their patterns of dimensional salience for movements, both at the lexical and at the inflectional levels. Linguistically relevant dimensions were of increased salience to native signers. The difference in perception of linguistic movement by native signers and by naive observers demonstrates that modification of natural perceptual categories after language acquisition is not bound to a particular transmission modality, but rather can be a more general consequence of acquiring a formal linguistic system.  相似文献   

14.
Left-Hemisphere Dominance for Motion Processing in Deaf Signers   总被引:4,自引:0,他引:4  
Evidence from neurophysiological studies in animals as well as humans has demonstrated robust changes in neural organization and function following early-onset sensory deprivation. Unfortunately, the perceptual consequences of these changes remain largely unexplored. The study of deaf individuals who have been auditorily deprived since birth and who rely on a visual language (i.e., American Sign Language, ASL) for communication affords a unique opportunity to investigate the degree to which perception in the remaining, intact senses (e.g., vision) is modified as a result of altered sensory and language experience. We studied visual motion perception in deaf individuals and compared their performance with that of hearing subjects. Thresholds and reaction times were obtained for a motion discrimination task, in both central and peripheral vision. Although deaf and hearing subjects had comparable absolute scores on this task, a robust and intriguing difference was found regarding relative performance for left-visual-field (LVF) versus right-visual-field (RVF) stimuli: Whereas hearing subjects exhibited a slight LVF advantage, the deaf exhibited a strong RVF advantage. Thus, for deaf subjects, the left hemisphere may be specialized for motion processing. These results suggest that perceptual processes required for the acquisition and comprehension of language (motion processing, in the case of ASL) are recruited (or "captured") by the left, language-dominant hemisphere.  相似文献   

15.
American Sign Language (ASL) offers a valuable opportunity for the study of cerebral asymmetries, since it incorporates both language structure and complex spatial relations: processing the former has generally been considered a left-hemisphere function, the latter, a right-hemisphere one. To study such asymmetries, congenitally deaf, native ASL users and normally-hearing English speakers unfamiliar with ASL were asked to identify four kinds of stimuli: signs from ASL, handshapes never used in ASL, Arabic digits, and random geometric forms. Stimuli were presented tachistoscopically to a visual hemifield and subjects manually responded as rapidly as possible to specified targets. Both deaf and hearing subjects showed left-visual-field (hence, presumably right-hemisphere) advantages to the signs and to the non-ASL hands. The hearing subjects, further, showed a left-hemisphere advantage to the Arabic numbers, while the deaf subjects showed no reliable visual-field differences to this material. We infer that the spatial processing required of the signs predominated over their language processing in determining the cerebral asymmetry of the deaf for these stimuli.  相似文献   

16.
A sign decision task, in which deaf signers made a decision about the number of hands required to form a particular sign of American Sign Language (ASL), revealed significant facilitation by repetition among signs that share a base morpheme. A lexical decision task on English words revealed facilitation by repetition among words that share a base morpheme in both English and ASL, but not among those that share a base morpheme in ASL only. This outcome occurred for both deaf and hearing subjects. The results are interpreted as evidence that the morphological principles of lexical organization observed in ASL do not extend to the organization of English for skilled deaf readers.  相似文献   

17.
Positron emission tomography was used to investigate whether the motor-iconic basis of certain forms in American Sign Language (ASL) partially alters the neural systems engaged during lexical retrieval. Most ASL nouns denoting tools and ASL verbs referring to tool-based actions are produced with a handshape representing the human hand holding a tool and with an iconic movement depicting canonical tool use, whereas the visual iconicity of animal signs is more idiosyncratic and inconsistent across signs. We investigated whether the motor-iconic relation between a sign and its referent alters the neural substrate for lexical retrieval in ASL. Ten deaf native ASL signers viewed photographs of tools/utensils or of actions performed with or without an implement and were asked to overtly produce the ASL sign for each object or action. The control task required subjects to judge the orientation of unknown faces. Compared to the control task, naming tools engaged left inferior and middle frontal gyri, bilateral parietal lobe, and posterior inferotemporal cortex. Naming actions performed with or without a tool engaged left inferior frontal gyrus, bilateral parietal lobe, and posterior middle temporal gyrus at the temporo-occipital junction (area MT). When motor-iconic verbs were compared with non-iconic verbs, no differences in neural activation were found. Overall, the results indicate that even when the form of a sign is indistinguishable from a pantomimic gesture, the neural systems underlying its production mirror those engaged when hearing speakers name tools or tool-based actions with speech.  相似文献   

18.
American Sign Language (ASL) has evolved within a completely different biological medium, using the hands and face rather than the vocal tract and perceived by eye rather than by ear. The research reviewed in this article addresses the consequences of this different modality for language processing, linguistic structure, and spatial cognition. Language modality appears to affect aspects of lexical recognition and the nature of the grammatical form used for reference. Select aspects of nonlinguistic spatial cognition (visual imagery and face discrimination) appear to be enhanced in deaf and hearing ASL signers. It is hypothesized that this enhancement is due to experience with a visual-spatial language and is tied to specific linguistic processing requirements (interpretation of grammatical facial expression, perspective transformations, and the use of topographic classifiers). In addition, adult deaf signers differ in the age at which they were first exposed to ASL during childhood. The effect of late acquisition of language on linguistic processing is investigated in several studies. The results show selective effects of late exposure to ASL on language processing, independent of grammatical knowledge.This research was supported in part by National Institutes of Health grant HD-13249 awarded to Ursula Bellugi and Karen Emmorey, as well as NIH grants DC-00146, DC-00201, and HD-26022. I would like to thank and acknowledge Ursula Bellugi for her collaboration during much of the research described in this article.  相似文献   

19.
This study was designed to determine the feasibility of using self-paced reading methods to study deaf readers and to assess how deaf readers respond to two syntactic manipulations. Three groups of participants read the test sentences: deaf readers, hearing monolingual English readers, and hearing bilingual readers whose second language was English. In Experiment 1, the participants read sentences containing subject-relative or object-relative clauses. The test sentences contained semantic information that would influence online processing outcomes (Traxler, Morris, & Seely Journal of Memory and Language 47: 69–90, 2002; Traxler, Williams, Blozis, & Morris Journal of Memory and Language 53: 204–224, 2005). All of the participant groups had greater difficulty processing sentences containing object-relative clauses. This difficulty was reduced when helpful semantic cues were present. In Experiment 2, participants read active-voice and passive-voice sentences. The sentences were processed similarly by all three groups. Comprehension accuracy was higher in hearing readers than in deaf readers. Within deaf readers, native signers read the sentences faster and comprehended them to a higher degree than did nonnative signers. These results indicate that self-paced reading is a useful method for studying sentence interpretation among deaf readers.  相似文献   

20.
This study explores the use of two types of facial expressions, linguistic and affective, in a lateralized recognition accuracy test with hearing and deaf subjects. The linguistic expressions represent unfamiliar facial expression for the hearing subjects whereas they serve as meaningful linguistic emblems for deaf signers. Hearing subjects showed left visual field advantages for both types of signals while deaf subjects' visual field asymmetries were greatly influenced by the order of presentation. The results suggest that for hearing persons, the right hemisphere may predominate in the recognition of all forms of facial expression. For deaf signers, hemispheric specialization for the processing of facial signals may be influenced by the differences these signals serve in this population. The use of noncanonical facial signals in laterality paradigms is encouraged as it provides an additional avenue of exploration into the underlying determinants of hemispheric specialization for recognition of facial expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号