首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neural correlates of adaptive decision making for risky gains and losses   总被引:2,自引:0,他引:2  
Do decisions about potential gains and potential losses require different neural structures for advantageous choices? In a lesion study, we used a new measure of adaptive decision making under risk to examine whether damage to neural structures subserving emotion affects an individual's ability to make adaptive decisions differentially for gains and losses. We found that individuals with lesions to the amygdala, an area responsible for processing emotional responses, displayed impaired decision making when considering potential gains, but not when considering potential losses. In contrast, patients with damage to the ventromedial prefrontal cortex, an area responsible for integrating cognitive and emotional information, showed deficits in both domains. We argue that this dissociation provides evidence that adaptive decision making for risks involving potential losses may be more difficult to disrupt than adaptive decision making for risks involving potential gains. This research further demonstrates the role of emotion in decision competence.  相似文献   

2.
The prevention of counterproductive or antisocial risk taking is a research priority. Attempts to understand risk-taking behaviors are dominated by the psychometric and neuropsychological paradigms, which have developed in relative isolation. Previous studies indicate that risk taking is associated with the sensation-seeking personality trait, although the relationship with impulsivity may be complex. Poor risk-related decision making is associated with lesions to the ventromedial prefrontal cortex. Further research is necessary to establish which forms of risk taking are associated with the 5-factor model of personality and may be influenced by ventromedial prefrontal cortex functioning. The relationship between risk-related decision making and personality traits is also discussed in order to provide a basis for future research adopting an integrated model of risk taking behavior.  相似文献   

3.
The neural mechanisms underlying the influence of persuasive messages on decision making are largely unknown. We address this issue using event-related fMRI to investigate how informative messages alter risk appraisal during choice. Participants performed the Iowa Gambling Task while viewing a positively framed, negatively framed, or control message about the options. The right anterior insula correlated with improvement in choice behavior due to the positively framed but not the negatively framed message. With the positively framed message, there was increased activation proportional to message effectiveness when less-preferred options were chosen, consistent with a role in the prediction of adverse outcomes. In addition, the dorsomedial and the left dorsolateral prefrontal cortex correlated with overall decision quality, regardless of message type. The dorsomedial region mediated the relationship between the right anterior insula and decision quality with the positively framed messages. These findings suggest a network of frontal brain regions that integrate informative messages into the evaluation of options during decision making. Supplemental procedures and results for this article may be downloaded from http://cabn.psychonomic-journals.org/content/supplemental.  相似文献   

4.
While it is acknowledged that species specific differences are an implicit condition of comparative studies, rodent models of prefrontal function serve a significant role in the acquisition of converging evidence on prefrontal function across levels of analysis and research techniques. The purpose of the present review is to examine whether the prefrontal cortex (PFC) in rats supports a variety of processes associated with executive function including working memory, temporal processing, planning (prospective coding), flexibility, rule learning, and decision making. Therefore, in this review we examined changes associated with working memory processes for spatial locations, visual objects, odors, tastes, and response domains or attributes, temporal processes including temporal order, sequence learning, prospective coding, behavioral flexibility associated with reversal learning and set shifting, paired associate learning, and decision making based on effort, time discounting, and uncertainty following damage to the PFC in rats. In addition, potential parallel processes of executive function in monkeys and humans based on several theories of subregional differentiation within the PFC will be presented. Specifically, theories based on domain or attribute specificity (Goldman-Rakic, 1996), level of processing (Petrides, 1996), rule learning based on complexity (Wise, Murray, & Gerfen, 1996), executive functions based on connectivity with other brain regions associated with top-down control (Miller & Cohen, 2001), are presented and applied to PFC function in rats with the aim of understanding subregional specificity in the rat PFC. The data suggest that there is subregional specificity within the PFC of rats, monkey and humans and there are parallel cognitive functions of the different subregions of the PFC in rats, monkeys and humans.  相似文献   

5.
应激是有机体在受到真实或者潜在的威胁刺激时所表现出来的全身性非特异性反应, 伴随着紧张和焦虑的心理体验, 交感神经系统的兴奋, 糖皮质激素分泌的增多以及脑干−边缘系统−前额叶神经环路的改变。应激对个体在风险决策行为中的风险寻求和风险回避倾向, 社会决策行为中的利己和利他倾向都会产生重要影响。策略使用异常、习惯化和自动化反应增强、反馈学习过程以及奖惩敏感性的改变是应激影响决策行为的认知基础; 应激激素的分泌, 及杏仁核、前额叶等在决策过程发挥重要作用的脑区活动的改变则为应激作用于决策行为的神经基础。未来研究应重点关注:应激的个体差异与应激对决策影响效应多样性的关系; 综合多种指标对应激进行测量; 考察应激的时序效应; 揭示个体的最佳应激水平; 加强对慢性应激影响决策以及应激对决策影响效应可逆性的研究; 揭示应激影响决策的神经机制。  相似文献   

6.
Prefrontal cortex provides both inhibitory and excitatory input to distributed neural circuits required to support performance in diverse tasks. Neurological patients with prefrontal damage are impaired in their ability to inhibit task-irrelevant information during behavioral tasks requiring performance over a delay. The observed enhancements of primary auditory and somatosensory cortical responses to task-irrelevant distractors suggest that prefrontal damage disrupts inhibitory modulation of inputs to primary sensory cortex, perhaps through abnormalities in a prefrontal-thalamic sensory gating system. Failure to suppress irrelevant sensory information results in increased neural noise, contributing to the deficits in decision making routinely observed in these patients. In addition to a critical role in inhibitory control of sensory flow to primary cortical regions, and tertiary prefrontal cortex also exerts excitatory input to activity in multiple sub-regions of secondary association cortex. Unilateral prefrontal damage results in multi-modal decreases in neural activity in posterior association cortex in the hemisphere ipsilateral to damage. This excitatory modulation is necessary to sustain neural activity during working memory. Thus, prefrontal cortex is able to sculpt behavior through parallel inhibitory and excitatory regulation of neural activity in distributed neural networks.  相似文献   

7.
朱海东  汪强 《心理科学》2015,(5):1095-1102
决策在人类社会发展的历程中扮演着非常重要的作用,而对其神经机制的探讨才不过几十年的时间。基于价值的决策理论,强调人们首先计算和表征事物的价值,随后比较和决策。在人脑中负责主观价值计算的神经基础有腹内侧前额叶皮层、眶额皮层以及其他脑区,而负责价值整合的脑区有腹内侧前额叶皮层、眶额皮层、背外侧前额叶皮层等。其中时间和风险的价值计算有着相同的神经基础,并且人脑可以将不同属性以及成本进行整合形成主观价值,按照曲线交互作用范式进行。通过自我控制、注意和认知调节等方法,同样可以调制人们的主观价值大小。未来需要继续强调模式分析、个体差异、老龄化和基因对价值计算的影响。  相似文献   

8.
The authors present a neurological theory of how cognitive information and emotional information are integrated in the nucleus accumbens during effective decision making. They describe how the nucleus accumbens acts as a gateway to integrate cognitive information from the ventromedial prefrontal cortex and the hippocampus with emotional information from the amygdala. The authors have modeled this integration by a network of spiking artificial neurons organized into separate areas and used this computational model to simulate 2 kinds of cognitive-affective integration. The model simulates successful performance by people with normal cognitive-affective integration. The model also simulates the historical case of Phineas Gage as well as subsequent patients whose ability to make decisions became impeded by damage to the ventromedial prefrontal cortex.  相似文献   

9.
Behavioral effects of neurotoxic lesions of the hippocampus, medial prefrontal (prelimbic, infralimbic and anterior cingulate) cortex or dorsal striatum were assessed using a DRL-10s schedule in mice. Post-operative acquisition data indicate that mice with hippocampal, but not prefrontal or striatal lesions received fewer reinforcements during daily 30-min sessions, and were less efficient in the timing of their responses. Additional analysis of inter-response-time (IRT) distributions revealed that the responses of hippocampal-lesioned mice exhibited undistinguishable responses for short IRTs (up to 9s). In addition, prefrontal-lesioned mice demonstrated a degradation of performance with further testing, and a flattened IRT distribution at late test phase, while striatal-lesioned mice behaved similarly to sham-lesioned mice. These results are interpreted in terms of known functions of the hippocampus in behavioral inhibition, and of the prefrontal cortex in executive control/decision making (and time production).  相似文献   

10.
Research on the neural basis that underlies decision making in humans has revealed that these processes are mediated by distributed neural networks that incorporate different regions of the frontal lobes, the amygdala, the ventral striatum, and the dopamine system. In the present article, we review recent studies in rodents investigating the contribution of these systems to different forms of cost-benefit decision making and focus on evaluations related to delays, effort, or risks associated with certain rewards. Anatomically distinct regions of the medial and orbital prefrontal cortex make dissociable contributions to different forms of decision making, although lesions of these regions can induce variable effects, depending on the type of tasks used to assess these functions. The basolateral amygdala and the nucleus accumbens play a more fundamental role in these evaluations, helping an organism overcome different costs to obtain better rewards. Dopamine activity biases behavior toward more costly yet larger rewards, although abnormal increases in dopamine transmission can exert opposing actions on different types of decision making. The fact that similar neural circuits are recruited to solve these types of problems in both humans and animals suggests that animal models of decision making will prove useful in elucidating the mechanisms mediating these processes.  相似文献   

11.
This study investigated the relationship between perfectionism and career decision‐making self‐efficacy. Participants completed the Almost Perfect Scale—Revised (R. B. Slaney, K. G. Rice, M. Mobley, J. Trippi, & J. S. Ashby, 2001) and the Career Decision‐Making Self‐Efficacy—Short Form (N. E. Betz, K. L. Klein, & K. M. Taylor, 1996). Adaptive perfectionists had higher levels of career decision‐making self‐efficacy than did maladaptive perfectionists and nonperfectionists. There was no difference between maladaptive perfectionists and nonperfectionists in career decision‐making self‐efficacy. Findings add to a growing body of research that suggests perfectionism has adaptive and maladaptive components. Implications for counseling and limitations are discussed.  相似文献   

12.
元认知通常指个体对自身认知活动的主观判断, 自信心作为其指标之一, 对个体认识和调节自己的行为有重要作用。研究表明自信心指标在联合研究过程中常见的任务类型涉及基础和高级心理加工过程, 此外, 自信心对联合决策的预测逐渐向基于计算模型的探索性参数变化。最后, 自信心的神经生理研究发现了前额叶皮层及其相关脑区和后顶叶皮层的重要性。今后应注重探索可能的预测参数和模型, 优化自信心对联合决策的预测作用。  相似文献   

13.
Decision-making research has thoroughly investigated how people choose from a set of externally provided options. However, in ill-structured real-world environments, possible options for action are not defined by the situation but have to be generated by the agent. Here, we apply behavioral analysis (Study 1) and functional magnetic resonance imaging (Study 2) to investigate option generation and subsequent choice. For this purpose, we employ a new experimental task that requires participants to generate options for simple real-world scenarios and to subsequently decide among the generated options. Correlational analysis with a cognitive test battery suggests that retrieval of options from long-term memory is a relevant process during option generation. The results of the fMRI study demonstrate that option generation in simple real-world scenarios recruits the anterior prefrontal cortex. Furthermore, we show that choice behavior and its neural correlates differ between self-generated and externally provided options. Specifically, choice between self-generated options is associated with stronger recruitment of the dorsal anterior cingulate cortex. This impact of option generation on subsequent choice underlines the need for an expanded model of decision making to accommodate choice between self-generated options.  相似文献   

14.
Although it is widely known that brain regions such as the prefrontal cortex, the amygdala, and the ventral striatum play large roles in decision making, their precise contributions remain unclear. Here, we used functional magnetic resonance imaging and principles of reinforcement learning theory to investigate the relationship between current reinforcements and future decisions. In the experiment, subjects chose between high-risk (i.e., low probability of a large monetary reward) and low-risk (high probability of a small reward) decisions. For each subject, we estimated value functions that represented the degree to which reinforcements affected the value of decision options on the subsequent trial. Individual differences in value functions predicted not only trial-to-trial behavioral strategies, such as choosing high-risk decisions following high-risk rewards, but also the relationship between activity in prefrontal and subcortical regions during one trial and the decision made in the subsequent trial. These findings provide a novel link between behavior and neural activity by demonstrating that value functions are manifested both in adjustments in behavioral strategies and in the neural activity that accompanies those adjustments.  相似文献   

15.
Emotions affects moral judgements, and controlled cognitive processes regulate those emotional responses during moral decision making. However, the neurobiological basis of this interaction is unclear. We used a graph theory measurement called participation coefficient (‘PC’) to quantify the resting-state functional connectivity within and between four meta-analytic groupings (MAGs) associated with emotion generation and regulation, to test whether that measurement predicts individual differences in moral foundations-based values. We found that the PC of one of the MAGs (MAG2) was positively correlated with one of the five recognized moral foundations–the one based on harm avoidance. We also found that increased inter-module connectivity between the ventromedial prefrontal cortex, dorsolateral prefrontal cortex and middle temporal gyrus with other nodes in the four MAGs was likewise associated with higher endorsement of the Harm foundation. These results suggest that individuals' sensitivity to harm is associated with functional integration of large-scale brain networks of emotional regulation. These findings add to our knowledge of how individual variations in our moral values could be reflected by intrinsic brain network organization and deepen our understanding of the relationship between emotion and cognition during evaluations of moral values.  相似文献   

16.
In this study, we investigated the interplay of habitual (model-free) and goal-directed (model-based) decision processes by using a two-stage Markov decision task in combination with event-related potentials (ERPs) and computational modeling. To manipulate the demands on model-based decision making, we applied two experimental conditions with different probabilities of transitioning from the first to the second stage of the task. As we expected, when the stage transitions were more predictable, participants showed greater model-based (planning) behavior. Consistent with this result, we found that stimulus-evoked parietal (P300) activity at the second stage of the task increased with the predictability of the state transitions. However, the parietal activity also reflected model-free information about the expected values of the stimuli, indicating that at this stage of the task both types of information are integrated to guide decision making. Outcome-related ERP components only reflected reward-related processes: Specifically, a medial prefrontal ERP component (the feedback-related negativity) was sensitive to negative outcomes, whereas a component that is elicited by reward (the feedback-related positivity) increased as a function of positive prediction errors. Taken together, our data indicate that stimulus-locked parietal activity reflects the integration of model-based and model-free information during decision making, whereas feedback-related medial prefrontal signals primarily reflect reward-related decision processes.  相似文献   

17.
This fMRI study examined the neural correlates of the observed improvement in advantageous risk-taking behavior, as measured by the number of adjusted pumps in the Balloon Analogue Risk Task (BART), following a 60-day course of a Traditional Chinese Medicine (TCM) recipe, specifically designed to regulate impulsiveness in order to modulate risk-taking behavior. The 14 participants recruited for this study were randomly assigned to the experimental and control groups and the TCM recipe (Panax, 520 mg; Astragalus membranaceous Bunge, 520 mg; Masnetitum, 840 mg; Ostrea gigas Thumb, 470 mg; Thinleaf Milkwort Root Radix Polygalae, 450 mg; and Os Draconis, 470 mg) was administered, as a diet supplement, to the seven participants in the experimental group. The neural activity of the two groups was monitored by a 3T MRI scanner, before and after the 60-day treatment. Associated with the improved advantageous risk-taking behavior seen in the experimental group, significantly stronger blood oxygenation level dependent (BOLD) responses were observed in the bilateral dorsolateral prefrontal cortex (DLPFC), left putamen, left thalamus, right insula, and right anterior cingulate cortex (ACC), regions which have previously been reported as being involved in risk-taking decision making. The effect of the TCM in improving advantageous risk-taking decision making appears to have been related to the enhanced efficiency of the cognitive affective system, the PFC–ACC–insula–striatum network, which functions to inhibit impulsiveness, to sensitize reward-related information, and to allow the opportunity, during risk estimation, to evaluate potential gains and losses. The findings of this study suggest that interventions acting on factors modulating risk-taking decision making could have a beneficial effect in terms of optimizing risk-taking behavior.  相似文献   

18.
Adolescent decision‐making is highly sensitive to input from the social environment. In particular, adult and maternal presence influence adolescents to make safer decisions when encountered with risky scenarios. However, it is currently unknown whether maternal presence confers a greater advantage than mere adult presence in buffering adolescent risk taking. In the current study, 23 adolescents completed a risk‐taking task during an fMRI scan in the presence of their mother and an unknown adult. Results reveal that maternal presence elicits greater activation in reward‐related neural circuits when making safe decisions but decreased activation following risky choices. Moreover, adolescents evidenced a more immature neural phenotype when making risky choices in the presence of an adult compared to mother, as evidenced by positive functional coupling between the ventral striatum and medial prefrontal cortex. Our results underscore the importance of maternal stimuli in bolstering adolescent decision‐making in risky scenarios.  相似文献   

19.
A blockchain can be considered a technological phenomenon that is made up of different interconnected and autonomous systems. Such systems are referred to here as cyber‐physical systems: complex interconnections of cyber and physical components. When cyber‐physical systems are interconnected, a new whole consisting of a system of systems is created by the autonomous systems and their intercommunication and interaction. In a blockchain, individual systems can independently make decisions on joint information transactions. The decision‐making procedures needed for this are executed based on fault‐tolerant communication and voting and consensus procedures, while the results of these decision‐making procedures are stored in distributed ledgers. Due to the intercommunication, interaction, and independent decision making by autonomous systems, the new whole of a blockchain is a complex entity. Complexity science rather than the usual reductionist scientific approach can help us better understand the behaviour of the new and continuously developing whole of a blockchain as a technological phenomenon.  相似文献   

20.
时间认知的脑机制研究   总被引:6,自引:2,他引:4  
从神经心理学和脑成像2个领域综述了有关时间认知脑机制的研究。神经心理学及脑损伤的研究结果表明小脑可能与内部时钟功能有关,前额叶可能调节时间认知中的注意过程。PET和fMRI脑成象研究结果显示,基底神经节、小脑和前额叶在所有的计时作业中都被激活。ERP的研究结果还证实,时间信息加工和非时间信息加工存在时间历程上的差异,并且时间信息加工还存在的显著半球优势效应。因此基底神经节、小脑和前额叶可能是时间认知的主要脑机制,但由于研究材料、方法和程序的不同,大脑皮层的广泛区域都有可能参与时间信息的加工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号