首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
VI Weisz  PF Argibay 《Cognition》2012,125(1):13-25
In contrast to models and theories that relate adult neurogenesis with the processes of learning and memory, almost no solid hypotheses have been formulated that involve a possible neurocomputational influence of adult neurogenesis on forgetting. Based on data from a previous study that implemented a simple but complete model of the main hippocampal circuitry (Weisz & Argibay, 2009), we now test this model under different situations to better study the case of remote memories. The results of this work show that following neurogenesis, the new, ongoing memories in the hippocampus are better retained than when no neurogenesis occurs at all, while the older memories are affected (to a lesser extent) by a special type of interference that is different from interference that occurs with an increasing number of memories per se. This work adds a new point of analysis in support of the interference view that might lead to the forgetting of memories in the hippocampus as they are transferred to neocortex for long-term storage, consistent with the Complementary Learning Systems models of system-level consolidation. Attention should be directed to the specific causes of interference; the results of this work signal a type of distortion of remote memories that is produced by the birth and the growth of new processing units, which results in a subtly impoverished retrieval as new neurons become active. The proposals of this model fit well with some empirical findings that are related to the issue. In the future, as new evidence emerges, we believe that this biological process, which is largely related to learning and memory, will also help to shape our ideas about normal forgetting and its possible contributions to system consolidation.  相似文献   

2.
We present an overview of two of our on-going projects relating processes in the hippocampus to memory. We are trying to understand why retrograde amnesia occurs after damage to the hippocampus. Our experiments establish the generality of several new retrograde amnesia phenomena that are at odds with the consensus view of the role of the hippocampus in memory. We show in many memory tasks that complete damage to the hippocampus produces retrograde amnesia that is equivalent for recent and remote memories. Retrograde amnesia affects a much wider range of memory tasks than anterograde amnesia. Normal hippocampal processes can interfere with retention of a long-term memory stored outside the hippocampus. We conclude that the hippocampus competes with nonhippocampal systems during memory encoding and retrieval. Finally, we outline a project to understand and manipulate adult hippocampal neurogenesis in order to repair damaged hippocampal circuitry to recover lost cognitive functions.  相似文献   

3.
The role of the hippocampal formation in learning and memory has long been recognized. However, despite decades of intensive research, the neurobiological basis of this process in the hippocampus remains enigmatic. Over 30 years ago, the production of new neurons was found to occur in the brains of adult rodents. More recently, the documentation of adult neurogenesis in the hippocampal formation of a variety of mammals, including humans, has suggested a novel approach towards understanding the biological bases of hippocampal function. Contemporary theories of hippocampal function include an important role for this brain region in associative learning. The addition of new neurons and consequently, their novel contribution to hippocampal circuitry could conceivably be a mechanism for relating spatially or temporally disparate events. In this review, we examine several lines of evidence suggesting that adult-generated neurons are involved in hippocampal-dependent learning. In particular, we examine the variables that modulate hippocampal neurogenesis in adulthood and their relation to learning and memory.  相似文献   

4.
In the late 19th Century, Sigmund Freud described the phenomenon in which people are unable to recall events from early childhood as infantile amnesia. Although universally observed, infantile amnesia is a paradox; adults have surprisingly few memories of early childhood despite the seemingly exuberant learning capacity of young children. How can these findings be reconciled? The mechanisms underlying this form of amnesia are the subject of much debate. Psychological/cognitive theories assert that the ability to maintain detailed, declarative-like memories in the long term correlates with the development of language, theory of mind, and/or sense of "self." However, the finding that experimental animals also show infantile amnesia suggests that this phenomenon cannot be explained fully in purely human terms. Biological explanations of infantile amnesia suggest that protracted postnatal development of key brain regions important for memory interferes with stable long-term memory storage, yet they do not clearly specify which particular aspects of brain maturation are causally related to infantile amnesia. Here, we propose a hypothesis of infantile amnesia that focuses on one specific aspect of postnatal brain development-the continued addition of new neurons to the hippocampus. Infants (humans, nonhuman primates, and rodents) exhibit high levels of hippocampal neurogenesis and an inability to form lasting memories. Interestingly, the decline of postnatal neurogenesis levels corresponds to the emergence of the ability to form stable long-term memory. We propose that high neurogenesis levels negatively regulate the ability to form enduring memories, most likely by replacing synaptic connections in preexisting hippocampal memory circuits.  相似文献   

5.
Nonreinforced retrieval can cause extinction and/or reconsolidation, two processes that affect subsequent retrieval in opposite ways. Using the Morris water maze task we show that, in the rat, repeated nonreinforced expression of spatial memory causes extinction, which is unaffected by inhibition of protein synthesis within the CA1 region of the dorsal hippocampus. However, if the number of nonreinforced retrieval trials is insufficient to induce long-lasting extinction, then a hippocampal protein synthesis-dependent reconsolidation process recovers the original memory. Inhibition of hippocampal protein synthesis after reversal learning sessions impairs retention of the reversed preference and blocks persistence of the original one, suggesting that reversal learning involves reconsolidation rather than extinction of the original memory. Our results suggest the existence of a hippocampal protein synthesis-dependent reconsolidation process that operates to recover or update retrieval-weakened memories from incomplete extinction.  相似文献   

6.
Upon retrieval, consolidated memories are again rendered vulnerable to the action of metabolic blockers, notably protein synthesis inhibitors. This has led to the hypothesis that memories are reconsolidated at the time of retrieval, and that this depends on protein synthesis. Ample evidence indicates that the hippocampus plays a key role both in the consolidation and reconsolidation of different memories. Despite this fact, at present there are no studies about the consequences of hippocampal protein synthesis inhibition in the storage and post-retrieval persistence of object recognition memory. Here we report that infusion of the protein synthesis inhibitor anisomycin in the dorsal CA1 region immediately or 180 min but not 360 min after training impairs consolidation of long-term object recognition memory without affecting short-term memory, exploratory behavior, anxiety state, or hippocampal functionality. When given into CA1 after memory reactivation in the presence of familiar objects, ANI did not affect further retention. However, when administered into CA1 immediately after exposing animals to a novel and a familiar object, ANI impaired memory of both of them. The amnesic effect of ANI was long-lasting, did not happen after exposure to two novel objects, following exploration of the context alone, or in the absence of specific stimuli, suggesting that it was not reversible but was contingent on the reactivation of the consolidated trace in the presence of a salient, behaviorally relevant novel cue. Our results indicate that hippocampal protein synthesis is required during a limited post-training time window for consolidation of object recognition memory and show that the hippocampus is engaged during reconsolidation of this type of memory, maybe accruing new information into the original trace.  相似文献   

7.
Retrieval of emotional memories   总被引:4,自引:0,他引:4  
Long-term memories are influenced by the emotion experienced during learning as well as by the emotion experienced during memory retrieval. The present article reviews the literature addressing the effects of emotion on retrieval, focusing on the cognitive and neurological mechanisms that have been revealed. The reviewed research suggests that the amygdala, in combination with the hippocampus and prefrontal cortex, plays an important role in the retrieval of memories for emotional events. The neural regions necessary for online emotional processing also influence emotional memory retrieval, perhaps through the reexperience of emotion during the retrieval process.  相似文献   

8.
心理韧性指个体面对逆境、挫折或重大威胁等应激情境下的有效且灵活适应的能力, 促进机体恢复正常的生理和心理功能。研究表明海马是调控心理韧性的重要脑区, 且催产素可能通过作用于海马增强心理韧性。海马内部环路内嗅皮层-齿状回-CA3可能调节恐惧记忆的泛化和消退以增强心理韧性; 海马外部环路齿状回-杏仁核-伏隔核及海马-伏隔核环路调节情绪, 可能分别通过促进奖赏和带来厌恶进而增强或降低心理韧性。催产素作用于海马增强心理韧性的可能途径有:催产素促进海马神经发生, 降低海马腹侧成熟神经元对应激的敏感性, 提高海马“模式分离”功能, 降低应激记忆泛化; 催产素恢复海马谢弗侧枝-CA1突触长时程增强, 促进机体适应应激; 催产素降低海马糖皮质激素受体水平, 重新建立机体稳态。  相似文献   

9.
There is a broad consensus that the hippocampal system plays a critical role in the encoding and retrieval of 'episodic' memories. Recent findings and computational modeling explicate the representational requirements of encoding episodic memories, and suggest that the idiosyncratic architecture of the hippocampal system and its interactions with cortical circuits are well-matched to the representational problems it must solve in order to support the episodic memory function. These findings also shed light on the nature of consolidation, identify the sorts of memories that must remain encoded in the hippocampal system for the long-term, and help delineate the semantic and episodic memory distinction.  相似文献   

10.
The goal of this work is to extend the theoretical understanding of the relationship between hippocampal spatial and memory functions to the level of neurophysiological mechanisms underlying spatial navigation and episodic memory retrieval. The proposed unifying theory describes both phenomena within a unique framework, as based on one and the same pathfinding function of the hippocampus. We propose a mechanism of reconstruction of the context of experience involving a search for a nearly shortest path in the space of remembered contexts. To analyze this concept in detail, we define a simple connectionist model consistent with available rodent and human neurophysiological data. Numerical study of the model begins with the spatial domain as a simple analogy for more complex phenomena. It is demonstrated how a nearly shortest path is quickly found in a familiar environment. We prove numerically that associative learning during sharp waves can account for the necessary properties of hippocampal place cells. Computational study of the model is extended to other cognitive paradigms, with the main focus on episodic memory retrieval. We show that the ability to find a correct path may be vital for successful retrieval. The model robustly exhibits the pathfinding capacity within a wide range of several factors, including its memory load (up to 30,000 abstract contexts), the number of episodes that become associated with potential target contexts, and the level of dynamical noise. We offer several testable critical predictions in both spatial and memory domains to validate the theory. Our results suggest that (1) the pathfinding function of the hippocampus, in addition to its associative and memory indexing functions, may be vital for retrieval of certain episodic memories, and (2) the hippocampal spatial navigation function could be a precursor of its memory function.  相似文献   

11.
The hippocampal region, a group of brain structures important for learning and memory, has been the focus of a large number of computational models. These tend to fall into two groups: (1) models of the role of the hippocampal region in incremental learning, which focus on the development of new representations that are sensitive to stimulus regularities and environmental context; (2) models that focus on the role of the hippocampal region in the rapid storage and retrieval of episodic memories. Rather than being in conflict, it is becoming apparent that both approaches are partially correct and might reflect the different functions of substructures of the hippocampal region. Future computational models will help to elaborate how these different substructures interact.  相似文献   

12.
Pavlovian fear conditioning is a robust and enduring form of emotional learning that provides an ideal model system for studying contextual regulation of memory retrieval. After extinction the expression of fear conditional responses (CRs) is context-specific: A conditional stimulus (CS) elicits greater conditional responding outside compared with inside the extinction context. Dorsal hippocampal inactivation with muscimol attenuates context-specific CR expression. We have previously shown that CS-elicited spike firing in the lateral nucleus of the amygdala is context-specific after extinction. The present study examines whether dorsal hippocampal inactivation with muscimol disrupts context-specific firing in the lateral amygdala. We conditioned rats to two separate auditory CSs and then extinguished each CS in separate and distinct contexts. Thereafter, single-unit activity and conditional freezing were tested to one CS in both extinction contexts after saline or muscimol infusion into the dorsal hippocampus. After saline infusion, rats froze more to the CS when it was presented outside of its extinction context, but froze equally in both contexts after muscimol infusion. In parallel with the behavior, lateral nucleus neurons exhibited context-dependent firing to extinguished CSs, and hippocampal inactivation disrupted this activity pattern. These data reveal a novel role for the hippocampus in regulating the context-specific firing of lateral amygdala neurons after fear memory extinction.  相似文献   

13.
Reconsolidation is the process by which previously consolidated memories are stabilized after retrieval. Several lines of evidence indicate that glucocorticoids modulate distinct phases of learning and memory. These effects are considered to be mediated by mineralocorticoid receptors and glucocorticoid receptors (GRs), which display a high concentration and distinct distribution in the hippocampus. The role of glucocorticoid system in fear memory reconsolidation is the subject of some controversy. Moreover, we found no studies that assessed the role of hippocampal GRs in fear memory reconsolidation. Here, we investigated the effect of GR blockade on fear memory reconsolidation in rats. Rats were trained and tested in an inhibitory avoidance task. Intrahippocampal or systemic administration of the GR antagonist RU38486 immediately following memory reactivation produced a deficit in post-retrieval long-term memory that persisted over test sessions, and memory did not re-emerge following a footshock reminder. These results indicate that hippocampal GRs are required for reconsolidation of fear-based memory.  相似文献   

14.
A complex brain network, centered on the hippocampus, supports episodic memories throughout their lifetimes. Classically, upon memory encoding during active behavior, hippocampal activity is dominated by theta oscillations (6-10Hz). During inactivity, hippocampal neurons burst synchronously, constituting sharp waves, which can propagate to other structures, theoretically supporting memory consolidation. This 'two-stage' model has been updated by new data from high-density electrophysiological recordings in animals that shed light on how information is encoded and exchanged between hippocampus, neocortex and subcortical structures such as the striatum. Cell assemblies (tightly related groups of cells) discharge together and synchronize across brain structures orchestrated by theta, sharp waves and slow oscillations, to encode information. This evolving dynamical schema is key to extending our understanding of memory processes.  相似文献   

15.
Neurogenesis continues to occur throughout life in the mammalian hippocampus. Previous research has suggested that the production of new neurons in the hippocampus during adulthood may be related to hippocampus-dependent learning and memory. However, the exact relationship between adult neurogenesis and learning and memory remains unclear. Here we investigated whether learning strategy selection is related to cell proliferation or to survival of new neurons in the hippocampus of adult male rats. We trained rats on alternating blocks of hippocampus-dependent (hidden platform) and hippocampus-independent (visible platform) versions of the Morris water task with the platform always in the same position. Following training, rats were given a probe session during which the platform was visible and in a novel location. Preferred strategy was determined by observing the initial swim path. Rats were classified as place strategy (hippocampus-dependent) users if they swam to the old platform location. Cue strategy (hippocampus-independent) users were classified as those rats that swam initially to the visible platform. Our results indicate that rats that preferentially used a place strategy had significantly lower cell proliferation than cue strategy users. However, there was no significant difference in cell survival or number of immature neurons between strategy user groups. These results suggest that low levels of cell proliferation in the dentate gyrus may be conducive or coincident with more efficient memory processing in the hippocampus.  相似文献   

16.
The hippocampus, space, and viewpoints in episodic memory   总被引:2,自引:0,他引:2  
A computational model of how single neurons in and around the rat hippocampus support spatial navigation is reviewed. The extension of this model, to include the retrieval from human long-term memory of spatial scenes and the spatial context of events is discussed. The model explores the link between spatial and mnemonic functions by supposing that retrieval of spatial information from long-term storage requires the imposition of a particular viewpoint. It is consistent with data relating to representational hemispatial neglect and the involvement of the mammillary bodies, anterior thalamus, and hippocampal formation in supporting both episodic recall and the representation of head direction. Some recent behavioural, neuropsychological, and functional neuroimaging experiments are reviewed, in which virtual reality is used to allow controlled study of navigation and memory for events set within a rich large-scale spatial context. These studies provide convergent evidence that the human hippocampus is involved in both tasks, with some lateralization of function (navigation on the right and episodic memory on the left). A further experiment indicates hippocampal involvement in retrieval of spatial information from a shifted viewpoint. I speculate that the hippocampal role in episodic recollection relates to its ability to represent a viewpoint moving within a spatial framework.  相似文献   

17.
Information that is spaced over time is better remembered than the same amount of information massed together. This phenomenon, known as the spacing effect, was explored with respect to its effect on learning and neurogenesis in the adult dentate gyrus of the hippocampal formation. Because the cells are generated over time and because learning enhances their survival, we hypothesized that training with spaced trials would rescue more new neurons from death than the same number of massed trials. In the first experiment, animals trained with spaced trials in the Morris water maze outperformed animals trained with massed trials, but there was not a direct effect of trial spacing on cell survival. Rather, animals that learned well retained more cells than animals that did not learn or learned poorly. Moreover, performance during acquisition correlated with the number of cells remaining in the dentate gyrus after training. In the second experiment, the time between blocks of trials was increased. Consequently, animals trained with spaced trials performed as well as those trained with massed, but remembered the location better two weeks later. The strength of that memory correlated with the number of new cells remaining in the hippocampus. Together, these data indicate that learning, and not mere exposure to training, enhances the survival of cells that are generated 1 wk before training. They also indicate that learning over an extended period of time induces a more persistent memory, which then relates to the number of cells that reside in the hippocampus.  相似文献   

18.
The mounting evidence for neurogenesis in the adult hippocampus has fundamentally challenged the traditional view of brain development. The intense search for clues as to the functional significance of the new neurons has uncovered a surprising connection between neurogenesis and depression. In animal models of depression, neurogenesis is reduced, whereas many treatments for depression promote neurogenesis. We speculate on why the hippocampus, traditionally viewed as a memory structure, might be involved in mood disorders, and what specific role the new neurons might have in the pathogenesis of and recovery from depression. The proposed role of neurogenesis in contextual-memory formation predicts a specific pattern of cognitive deficits in depression and has important implications for treatment of this highly prevalent and debilitating disorder.  相似文献   

19.
Retrograde amnesia following disruptions of hippocampal function is often temporally graded, with recent memories being more impaired. Evidence supports the existence of one or more neocortical long-term memory storage/retrieval site(s). Neurotoxic lesions of the medial prefrontal cortex (mPFC) or the dorsal hippocampus (DH) were made 1 day or 200 days following trace fear conditioning. Recently encoded trace fear memories were most disrupted by DH lesions, while remotely encoded trace and contextual memories were most disrupted by mPFC lesions. These data strongly support the consolidation theory of hippocampus function and implicate the mPFC as a site of long-term memory storage/retrieval.  相似文献   

20.
巩固的记忆被提取后,进入不稳定状态,再重新稳定下来,这个过程称为记忆再巩固。本文首先阐述人类记忆再巩固主要研究方法和经典范式,梳理记忆再巩固在人类恐惧记忆和情景记忆两个方面的相关研究,并从认知神经科学角度整理记忆再巩固的加工机制。然后总结记忆再巩固应用于创伤性应激障碍和药物成瘾等心理障碍临床治疗的相关文献。最后本文提出未来研究的方向和建议,希冀对人类记忆再巩固的理论研究和临床应用提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号