首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed Bayesian approach is particularly beneficial in applications where parameters are added to a conventional model such that a nonidentified model is obtained if maximum-likelihood estimation is applied. This approach is useful for measurement aspects of latent variable modeling, such as with confirmatory factor analysis, and the measurement part of structural equation modeling. Two application areas are studied, cross-loadings and residual correlations in confirmatory factor analysis. An example using a full structural equation model is also presented, showing an efficient way to find model misspecification. The approach encompasses 3 elements: model testing using posterior predictive checking, model estimation, and model modification. Monte Carlo simulations and real data are analyzed using Mplus. The real-data analyses use data from Holzinger and Swineford's (1939) classic mental abilities study, Big Five personality factor data from a British survey, and science achievement data from the National Educational Longitudinal Study of 1988. (PsycINFO Database Record (c) 2012 APA, all rights reserved).  相似文献   

2.
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent variables. The response model generalizes GLMMs to incorporate factor structures in addition to random intercepts and coefficients. As in GLMMs, the data can have an arbitrary number of levels and can be highly unbalanced with different numbers of lower-level units in the higher-level units and missing data. A wide range of response processes can be modeled including ordered and unordered categorical responses, counts, and responses of mixed types. The structural model is similar to the structural part of a SEM except that it may include latent and observed variables varying at different levels. For example, unit-level latent variables (factors or random coefficients) can be regressed on cluster-level latent variables. Special cases of this framework are explored and data from the British Social Attitudes Survey are used for illustration. Maximum likelihood estimation and empirical Bayes latent score prediction within the GLLAMM framework can be performed using adaptive quadrature in gllamm, a freely available program running in Stata.gllamm can be downloaded from http://www.gllamm.org. The paper was written while Sophia Rabe-Hesketh was employed at and Anders Skrondal was visiting the Department of Biostatistics and Computing, Institute of Psychiatry, King's College London.  相似文献   

3.
Bayesian estimation and testing of structural equation models   总被引:2,自引:0,他引:2  
The Gibbs sampler can be used to obtain samples of arbitrary size from the posterior distribution over the parameters of a structural equation model (SEM) given covariance data and a prior distribution over the parameters. Point estimates, standard deviations and interval estimates for the parameters can be computed from these samples. If the prior distribution over the parameters is uninformative, the posterior is proportional to the likelihood, and asymptotically the inferences based on the Gibbs sample are the same as those based on the maximum likelihood solution, for example, output from LISREL or EQS. In small samples, however, the likelihood surface is not Gaussian and in some cases contains local maxima. Nevertheless, the Gibbs sample comes from the correct posterior distribution over the parameters regardless of the sample size and the shape of the likelihood surface. With an informative prior distribution over the parameters, the posterior can be used to make inferences about the parameters underidentified models, as we illustrate on a simple errors-in-variables model.We thank David Spiegelhalter for suggesting applying the Gibbs sampler to structural equation models to the first author at a 1994 workshop in Wiesbaden. We thank Ulf Böckenholt, Chris Meek, Marijtje van Duijn, Clark Glymour, Ivo Molenaar, Steve Klepper, Thomas Richardson, Teddy Seidenfeld, and Tom Snijders for helpful discussions, mathematical advice, and critiques of earlier drafts of this paper.  相似文献   

4.
Recently, R. D. Stoel, F. G. Garre, C. Dolan, and G. van den Wittenboer (2006) reviewed approaches for obtaining reference mixture distributions for difference tests when a parameter is on the boundary. The authors of the present study argue that this methodology is incomplete without a discussion of when the mixtures are needed and show that they only become relevant when constrained difference tests are conducted. Because constrained difference tests can hide important model misspecification, a reliable way to assess global model fit under constrained estimation would be needed. Examination of the options for assessing model fit under constrained estimation reveals that no perfect solutions exist, although the conditional approach of releasing a degree of freedom for each active constraint appears to be the most methodologically sound one. The authors discuss pros and cons of constrained and unconstrained estimation and their implementation in 5 popular structural equation modeling packages and argue that unconstrained estimation is a simpler method that is also more informative about sources of misfit. In practice, researchers will have trouble conducting constrained difference tests appropriately, as this requires a commitment to ignore Heywood cases. Consequently, mixture distributions for difference tests are rarely appropriate.  相似文献   

5.
6.
7.
Missing data techniques for structural equation modeling   总被引:2,自引:0,他引:2  
As with other statistical methods, missing data often create major problems for the estimation of structural equation models (SEMs). Conventional methods such as listwise or pairwise deletion generally do a poor job of using all the available information. However, structural equation modelers are fortunate that many programs for estimating SEMs now have maximum likelihood methods for handling missing data in an optimal fashion. In addition to maximum likelihood, this article also discusses multiple imputation. This method has statistical properties that are almost as good as those for maximum likelihood and can be applied to a much wider array of models and estimation methods.  相似文献   

8.
Formulas for the asymptotic biases of the parameter estimates in structural equation models are provided in the case of the Wishart maximum likelihood estimation for normally and nonnormally distributed variables. When multivariate normality is satisfied, considerable simplification is obtained for the models of unstandardized variables. Formulas for the models of standardized variables are also provided. Numerical examples with Monte Carlo simulations in factor analysis show the accuracy of the formulas and suggest the asymptotic robustness of the asymptotic biases with normality assumption against nonnormal data. Some relationships between the asymptotic biases and other asymptotic values are discussed.The author is indebted to the editor and anonymous reviewers for their comments, corrections, and suggestions on this paper, and to Yutaka Kano for discussion on biases.  相似文献   

9.
10.
To synthesize studies that use structural equation modeling (SEM), researchers usually use Pearson correlations (univariate r), Fisher z scores (univariate z), or generalized least squares (GLS) to combine the correlation matrices. The pooled correlation matrix is then analyzed by the use of SEM. Questionable inferences may occur for these ad hoc procedures. A 2-stage structural equation modeling (TSSEM) method is proposed to incorporate meta-analytic techniques and SEM into a unified framework. Simulation results reveal that the univariate-r, univariate-z, and TSSEM methods perform well in testing the homogeneity of correlation matrices and estimating the pooled correlation matrix. When fitting SEM, only TSSEM works well. The GLS method performed poorly in small to medium samples.  相似文献   

11.
Model selection in structural equation modeling (SEM) involves using selection criteria to declare one model superior and treating it as a best working hypothesis until a better model is proposed. A limitation of this approach is that sampling variability in selection criteria usually is not considered, leading to assertions of model superiority that may not withstand replication. We illustrate that selection decisions using information criteria can be highly unstable over repeated sampling and that this uncertainty does not necessarily decrease with increases in sample size. Methods for addressing model selection uncertainty in SEM are evaluated, and implications for practice are discussed.  相似文献   

12.
Structural equation modeling (SEM) is a frequently used data-analytic technique in psychopathology research. This popularity is due to the unique capabilities and broad applicability of SEM and to recent advances in model and software development. Unfortunately, the popularity and accessibility of SEM is matched by its complexities and ambiguities. Thus, users are often faced with difficult decisions regarding a variety of issues. This special section is designed to increase the effective use of SEM by reviewing recently developed modeling capabilities, identifying common problems in application, and recommending appropriate strategies for analysis and evaluation.  相似文献   

13.
This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison, 2002). Focus is given to the multivariate normal distribution, and 9 separate decompositions (i.e., class structures) of the covariance matrix are investigated. To provide a link to the current literature, comparisons are made with K-means clustering in 3 detailed Monte Carlo studies. The findings have implications for applied researchers in that mixture-model clustering techniques performed best when the covariance structure and number of clusters were known. However, as the information about the shape and number of clusters became unknown, degraded performance was observed for both K-means clustering and mixture-model clustering.  相似文献   

14.
15.
The asymptotic standard errors of the correlation residuals and Bentler's standardized residuals in covariance structures are derived based on the asymptotic covariance matrix of raw covariance residuals. Using these results, approximations of the asymptotic standard errors of the root mean square residuals for unstandardized or standardized residuals are derived by the delta method. Further, in mean structures, approximations of the asymptotic standard errors of residuals, standardized residuals and their summary statistics are derived in a similar manner. Simulations are carried out, which show that the asymptotic standard errors of the various types of residuals and the root mean square residuals in covariance, correlation and mean structures are close to actual ones.The author is indebted to the reviewers for their comments and suggestions which have led to an improvement of this work.  相似文献   

16.
17.
Meta-analytic structural equation modeling (MASEM) combines the ideas of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Cheung and Chan (Psychological Methods 10:40–64, 2005b, Structural Equation Modeling 16:28–53, 2009) proposed a two-stage structural equation modeling (TSSEM) approach to conducting MASEM that was based on a fixed-effects model by assuming that all studies have the same population correlation or covariance matrices. The main objective of this article is to extend the TSSEM approach to a random-effects model by the inclusion of study-specific random effects. Another objective is to demonstrate the procedures with two examples using the metaSEM package implemented in the R statistical environment. Issues related to and future directions for MASEM are discussed.  相似文献   

18.
This paper is about fitting multivariate normal mixture distributions subject to structural equation modeling. The general model comprises common factor and structural regression models. The introduction of covariance and mean structure models reduces the number of parameters to be estimated in fitting the mixture and enables one to investigate a variety of substantive hypotheses concerning the differences between the components in the mixture. Within the general model, individual parameters can be subjected to equality, nonlinear and simple bounds constraints. Confidence intervals are based on the inverse of the Hessian and on the likelihood profile. Several illustrations are given and results of a simulation study concerning the confidence intervals are reported.  相似文献   

19.
Thought-action fusion (TAF), the phenomenon whereby one has difficulty separating cognitions from corresponding behaviors, has implications in a wide variety of disturbances, including eating disorders, obsessive-compulsive disorder, generalized anxiety disorder, and panic disorder. Numerous constructs believed to contribute to the etiology or maintenance of TAF have been identified in the literature, but to date, no study has empirically integrated these findings into a comprehensive model. In this study, we examined simultaneously an array of variables thought to be related to TAF, and subsequently developed a model that elucidates the role of those variables that seem most involved in this phenomenon using a structural equation modeling approach. Results indicated that religiosity, as predicted by ethnic identity, was a significant predictor of TAF. Additionally, the relation between ethnic identity and TAF was partially mediated by an inflated sense of responsibility. Both TAF and obsessive-compulsive symptoms were found to be significant predictors of engagement in neutralization activities. Clinical and theoretical implications are discussed.  相似文献   

20.
A problem with standard errors estimated by many structural equation modeling programs is described. In such programs, a parameter's standard error is sensitive to how the model is identified (i.e., how scale is set). Alternative but equivalent ways to identify a model may yield different standard errors, and hence different Z tests for a parameter, even though the identifications produce the same overall model fit. This lack of invariance due to model identification creates the possibility that different analysts may reach different conclusions about a parameter's significance level even though they test equivalent models on the same data. The authors suggest that parameters be tested for statistical significance through the likelihood ratio test, which is invariant to the identification choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号