首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pediatric reading disorder (RD) is associated with an increased risk of anxiety symptoms, yet understudied are the neurobiological factors that might underlie anxiety in children with RD. Given the role of the amygdala in anxiety, we assessed resting state functional connectivity of amygdalar subregions in children with RD to identify functional correlates of anxiety and reading impairment. We collected resting state functional MRI data from 22 children with RD and 21 typically developing (TD) children, ages 7 to 13 years. We assessed group differences in resting state functional connectivity (RSFC) from amygdalar subregions. Associations of amygdalar RSFC and volume with reading impairment, reading fluency scores, and anxiety symptoms were explored. Relative to TD children, those with RD showed increased RSFC from amygdalar nuclei to medial prefrontal cortex. Across all subjects, RSFC from right centromedial amygdala to left medial prefrontal cortex positively predicted both reading impairment and self‐reported anxiety, and anxiety mediated the relationship between RSFC and reading impairment. These findings are consistent with amygdalar functional abnormalities in pediatric anxiety disorders, suggesting a common neurobiological mechanism underlying anxiety and reading impairment in children. Thus, aberrant patterns of RSFC from amygdalar subregions may serve as potential targets for the treatment of anxiety symptoms that typically co‐occur with RD. Our dimensional approach to studying anxiety in RD revealed how amygdalar connectivity underlies anxiety and reading impairment across a continuum from normal to abnormal.  相似文献   

2.
童丹丹  李文福  禄鹏  杨文静  杨东  张庆林  邱江 《心理学报》2020,52(11):1253-1265
以高生态学效度的科学发明问题情境作为实验材料, 采用静息态功能磁共振成像技术, 基于低频振幅(ALFF)和静息态功能连接(RSFC)的分析方法, 探讨创造性科学问题提出的脑机制。结果发现, 在控制了被试性别、年龄后, 提出新颖有效性问题的比率越高, 左内侧前额叶(Left media prefrontal cortex, L-mPFC)和右小脑前叶(Right cerebellum)的ALFF值越高。进一步功能连接分析发现, 提出新颖有效性问题的比率与mPFC和楔叶(Cuneus)之间的功能连接强度呈显著正相关。结果强调mPFC对于科学发明情境中问题提出的重要作用, 且更高比率的新颖有效性问题的提出是通过mPFC与其它脑区的协同联结来实现的。  相似文献   

3.
Value-based decision making (VBDM) is a principle that states that humans and other species adapt their behavior according to the dynamic subjective values of the chosen or unchosen options. The neural bases of this process have been extensively investigated using task-based fMRI and lesion studies. However, the growing field of resting-state functional connectivity (RSFC) may shed light on the organization and function of brain connections across different decision-making domains. With this aim, we used independent component analysis to study the brain network dynamics in a large cohort of young males (N = 145) and the relationship of these dynamics with VBDM. Participants completed a battery of behavioral tests that evaluated delay aversion, risk seeking for losses, risk aversion for gains, and loss aversion, followed by an RSFC scan session. We identified a set of large-scale brain networks and conducted our analysis only on the default mode network (DMN) and networks comprising cognitive control, appetitive-driven, and reward-processing regions. Higher risk seeking for losses was associated with increased connectivity between medial temporal regions, frontal regions, and the DMN. Higher risk seeking for losses was also associated with increased coupling between the left frontoparietal network and occipital cortices. These associations illustrate the participation of brain regions involved in prospective thinking, affective decision making, and visual processing in participants who are greater risk-seekers, and they demonstrate the sensitivity of RSFC to detect brain connectivity differences associated with distinct VBDM parameters.  相似文献   

4.
The personality traits neuroticism and extraversion are differentially related to socioemotional functioning and susceptibility to affective disorders. However, the neurobiology underlying this differential relationship is still poorly understood. This discrepancy could perhaps best be studied by adopting a brain connectivity approach. Whereas the amygdala has repeatedly been linked to neuroticism and extraversion, no study has yet focused on the intrinsic functional architecture of amygdala-centered networks in relation to both traits. To this end, seed-based correlation analysis was employed to reveal amygdala resting-state functional connectivity (RSFC) and its associations with neuroticism and extraversion in 50 healthy participants. Higher neuroticism scores were associated with increased amygdala RSFC with the precuneus, and decreased amygdala RSFC with the temporal poles, insula, and superior temporal gyrus (p < .05, cluster corrected). Conversely, higher extraversion scores were associated with increased amygdala RSFC with the putamen, temporal pole, insula, and several regions of the occipital cortex (p < .05, cluster corrected). The shifts in amygdala RSFC associated with neuroticism may relate to the less-adaptive perception and processing of self-relevant and socioemotional information that is frequently seen in neurotic individuals, whereas the amygdala RSFC pattern associated with extraversion may relate to the heightened reward sensitivity and enhanced socioemotional functioning in extraverts. We hypothesize that the variability in amygdala RSFC observed in the present study could potentially link neuroticism and extraversion to the neurobiology underlying increased susceptibility or resilience to affective disorders.  相似文献   

5.
Coping abilities represent the individual set of mental and behavioral strategies adopted when facing stress or traumatic experiences. Coping styles related to avoidance have been linked to a disposition to develop psychiatric disorders such as PTSD, anxiety, and major depression, whereas problem-oriented coping skills have been positively correlated with well-being and high quality of life. Even though coping styles constitute an important determinant of resilience and can impact many aspects of everyday living, no study has investigated their brain functional connectivity underpinnings in humans. Here we analyzed both psychometric scores of coping and resting-state fMRI data from 102 healthy adult participants. Controlling for personality and problem-solving abilities, we identified significant links between the propensity to adopt different coping styles and the functional connectivity profiles of regions belonging to the default mode (DMN) and anterior salience (AS) networks—namely, the anterior cingulate cortex, left frontopolar cortex, and left angular gyrus. Also, a reduced negative correlation between AS and DMN nodes explained variability in one specific coping style, related to avoiding problems while focusing on the emotional component of the stressor at hand, instead of relying on cognitive resources. These results might be integrated with current neurophysiological models of resilience and individual responses to stress, in order to understand the propensity to develop clinical conditions (e.g., PTSD) and predict the outcomes of psychotherapeutic interventions.  相似文献   

6.
Personality dimension extraversion describes individual differences in social behaviour and socio‐emotional functioning. The intrinsic functional connectivity patterns of the brain are reportedly associated with extraversion. However, whether or not extraversion is associated with functional hubs warrants clarification. Functional hubs are involved in the rapid integration of neural processing, and their dysfunction contributes to the development of neuropsychiatric disorders. In this study, we employed the functional connectivity density (FCD) method for the first time to distinguish the energy‐efficient hubs associated with extraversion. The resting‐state functional magnetic resonance imaging data of 71 healthy subjects were used in the analysis. Short‐range FCD was positively correlated with extraversion in the left cuneus, revealing a link between the local functional activity of this region and extraversion in risk‐taking. Long‐range FCD was negatively correlated with extraversion in the right superior frontal gyrus and the inferior frontal gyrus. Seed‐based resting‐state functional connectivity (RSFC) analyses revealed that a decreased long‐range FCD in individuals with high extraversion scores showed a low long‐range functional connectivity pattern between the medial and dorsolateral prefrontal cortex, middle temporal gyrus, and anterior cingulate cortex. This result suggests that decreased RSFC patterns are responsible for self‐esteem, self‐evaluation, and inhibitory behaviour system that account for the modulation and shaping of extraversion. Overall, our results emphasize specific brain hubs, and reveal long‐range functional connections in relation to extraversion, thereby providing a neurobiological basis of extraversion.  相似文献   

7.
A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9-13-year-old children with diffusion tensor imaging and resting-state functional magnetic resonance imaging. We identified resting-state networks using Independent Component Analysis and tested whether the functional connectivity between the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) depends upon the maturation of the underlying cingulum white matter tract. To determine the generalizability of this relationship, we also tested whether functional connectivity depends on white matter maturity between bilateral lateral prefrontal cortex (lateral PFC) within the executive control network. We found a positive relationship between mPFC-PCC connectivity and fractional anisotropy of the cingulum bundle; this positive relationship was moderated by the age of the subjects such that it was stronger in older children. By contrast, no such structure-function relationship emerged between right and left lateral PFC. However, functional and structural connectivity of this tract related positively with cognitive speed, fluency, and set-switching neuropsychological measures.  相似文献   

8.
The amygdala forms a crucial link between central pain and stress systems. Previous research indicates that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus a control task, with the stressor and control conditions being conducted on different days. During the period of peak cortisol response to acute stress (approximately 15–30 min after stressor onset), participants were asked to rest for 6 min with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex, and this occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (ACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of poststressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 min after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback.  相似文献   

9.
Autonomous sensory meridian response (ASMR) is a sensory-emotional phenomenon in which specific sensory stimuli (“ASMR triggers”) reliably elicit feelings of relaxation and tingling sensations on the head, neck, and shoulders. However, there are individual differences in which stimuli elicit ASMR and in the intensity of these responses. In the current research, we used resting-state fMRI to examine the functional connectivity associated with these differences. Fifteen individuals with self-reported ASMR completed the ASMR Checklist, which measures sensitivity to different ASMR triggers, and a resting-state fMRI scan. Checklist scores were entered as covariates to determine whether the functional connectivity of eight resting-state networks differed as a function of participants’ sensitivity to five categories of triggers. The results indicated unique patterns of functional connectivity associated with sensitivity to each ASMR trigger category. Sensitivity to two trigger categories was positively correlated with the dorsal attention network, suggesting that ASMR may involve atypical attentional processing.  相似文献   

10.
Emotion perception deficits could be due to disrupted connectivity of key nodes in the salience and emotion network (SEN), including the amygdala, subgenual anterior cingulate cortex (sgACC), and insula. We examined SEN resting-state (rs-)fMRI connectivity in rMDD in relation to Facial Emotion Perception Test (FEPT) performance. Fifty-two medication-free people ages 18 to 23 years participated. Twenty-seven had major depressive disorder (MDD) in remission (rMDD, 10 males), as MDD is associated with emotion perception deficits and alterations in rsfMRI. Twenty-five healthy controls (10 males) also participated. Participants completed the FEPT during fMRI, in addition to an 8-minute eyes-open resting-state scan. Seed regions of interest were defined in the amygdala, anterior insula and sgACC. Multiple regression analyses co-varied diagnostic group, sex and movement parameters. Emotion perception accuracy was positively associated with connectivity between amygdala seeds and regions primarily in the SEN and cognitive control network (CCN), and also the default mode network (DMN). Accuracy was also positively associated with connectivity between the sgACC seeds and other SEN regions, and the DMN, particularly for the right sgACC. Connectivity negatively associated with emotion perception was mostly with regions outside of these three networks, other than the left insula and part of the DMN. This study is the first to our knowledge to demonstrate relationships between facial emotion processing and resting-state connectivity with SEN nodes and between SEN nodes and regions located within other neural networks.  相似文献   

11.
研究结合静息态全脑功能连接密度和基于种子点的功能连接(FC)分析考察了藏汉双语者汉语(L2)阅读各子能力(细节捕捉和推理判断)的固有脑功能组织特点。结果发现左侧额下回—左侧颞上回和右侧舌回—右侧中央前回之间的FC值均与细节捕捉题得分和推理判断题得分呈显著正相关,但是左侧额下回—右侧顶下小叶之间的FC值只与推理判断题得分呈显著正相关。表明藏汉双语者汉语阅读各子能力之间既有重叠的又有不同的功能连接通路。  相似文献   

12.
Converging theory and evidence highlights procrastination as a form of self-control failure. However, the underlying neural correlates of how self-control is associated with procrastination remains unclear. As such we investigated the neural basis for self-control association with procrastination using voxel-based morphometry (VBM) and resting-state functional connectivity (FC) approaches. The VBM results showed a positive correlation between self-control and the gray matter volume of left dorsolateral prefrontal cortex (dlPFC). Then the FC of left dlPFC to lateral orbital frontal cortex (lOFC) and right dorsal medial frontal cortex (dMFC) were all negatively correlated to procrastination and showed a mediating effect. This indicates that brain functional communication involves in emotion regulation and valuation processing may account for the association between self-control and procrastination.  相似文献   

13.
Ruminative thinking is related to an increased risk for major depressive disorder (MDD) and perpetuates negative mood states. Rumination, uncontrollable negative thoughts about the self, may comprise both reflective and brooding components. However, only brooding rumination is consistently associated with increased negativity bias and negative coping styles, while reflective rumination has a less clear relationship with negative outcomes in healthy and depressed participants. The current study examined seed-to-voxel (S2.V) resting-state functional connectivity (FC) in a sample of healthy (HC) and depressed (MDD) adult women (HC: n=50, MDD: n=33). The S2V FC of six key brain regions, including the left and right amygdala, anterior and posterior cingulate cortex (ACC, PCC), and medial and dorsolateral prefrontal cortices (mPFC, dlPFC), was correlated with self-reported reflective and brooding rumination. Results indicate that HC and MDD participants had increased brooding rumination associated with decreased FC between the left amygdala and the right temporal pole. Moreover, reflective rumination was associated with distinct FC of the mPFC, PCC, and ACC with parietal, occipital, and cingulate regions. Depressed participants, compared with HC, exhibited decreased FC between the PCC and a region in the right middle frontal gyrus. The results of the current study add to the understanding of the neural underpinnings of different forms of self-related cognition—brooding and reflective rumination—in healthy and depressed women.  相似文献   

14.
Using resting-state fMRI, this study investigated long-term ice-skating training related changes in elite ice-skating athletes and compared them to healthy age-matched non-athletes under resting-state conditions. Significant differences were found in both structural and functional plasticity. Specifically, elite ice-skating athletes showed higher gray matter volume in the posterior cerebellum, frontal lobe, temporal lobe, posterior cingulate, caudate, and thalamus. The functional plasticity changes were primarily concentrated in the posterior cerebellar lobe. Additionally, stronger connectivity between the posterior cerebellar lobe and fusiform gyrus was also found in elite ice-skating athletes. Overall, the results are consistent with other studies that concluded long-term professional motor skill training can cause structural and functional plasticity in the regions of the brain related to motor planning, execution, and supervision. Both structural plasticity and functional plasticity are primarily enhanced in the posterior cerebellum. These changes may be related to the outstanding capability of speed and coordination caused by long-term ice-skating training. Present results add new evidence and may help us to understand the neural mechanisms of long-term motor skill training.  相似文献   

15.
Schizophrenia—a severe psychiatric condition characterized by hallucinations, delusions, loss of initiative and cognitive function—is hypothesized to result from abnormal anatomical neural connectivity and a consequent decoupling of the brain’s integrative thought processes. The rise of in vivo neuroimaging techniques has refueled the formulation of dysconnectivity hypotheses, linking schizophrenia to abnormal structural and functional connectivity in the brain at both microscopic and macroscopic levels. Over the past few years, advances in high-field structural and functional neuroimaging techniques have made it increasingly feasible to reconstruct comprehensive maps of the macroscopic neural wiring system of the human brain, know as the connectome. In parallel, advances in network science and graph theory have improved our ability to study the spatial and topological organizational layout of such neural connectivity maps in detail. Combined, the field of neural connectomics has created a novel platform that provides a deeper understanding of the overall organization of brain wiring, its relation to healthy brain function and human cognition, and conversely, how brain disorders such as schizophrenia arise from abnormal brain network wiring and dynamics. In this review we discuss recent findings of connectomic studies in schizophrenia that examine how the disorder relates to disruptions of brain connectivity.  相似文献   

16.
BackgroundIn recent years several meta-analyses regarding resting-state functional connectivity in patients with schizophrenia have been published. The authors have used different data analysis techniques: regional homogeneity, seed-based data analysis, independent component analysis, and amplitude of low frequencies. Hence, we aim to perform a meta-analysis to identify connectivity networks with different activation patterns between people diagnosed with schizophrenia and healthy controls using voxel-wise analysis. Method: We collected primary studies exploring whole brain connectivity by functional magnetic resonance imaging at rest in patients with schizophrenia compared with healthy controls. We identified 25 studies included high-quality studies that included 1285 patients with schizophrenia and 1279 healthy controls. Results: The results indicate hypoactivation in the right precentral gyrus and the left superior temporal gyrus of patients with schizophrenia compared with healthy controls. Conclusions: These regions have been linked with some clinical symptoms usually present in Plea with schizophrenia, such as auditory verbal hallucinations, formal thought disorder, and the comprehension and production of gestures.  相似文献   

17.
Emotions affects moral judgements, and controlled cognitive processes regulate those emotional responses during moral decision making. However, the neurobiological basis of this interaction is unclear. We used a graph theory measurement called participation coefficient (‘PC’) to quantify the resting-state functional connectivity within and between four meta-analytic groupings (MAGs) associated with emotion generation and regulation, to test whether that measurement predicts individual differences in moral foundations-based values. We found that the PC of one of the MAGs (MAG2) was positively correlated with one of the five recognized moral foundations–the one based on harm avoidance. We also found that increased inter-module connectivity between the ventromedial prefrontal cortex, dorsolateral prefrontal cortex and middle temporal gyrus with other nodes in the four MAGs was likewise associated with higher endorsement of the Harm foundation. These results suggest that individuals' sensitivity to harm is associated with functional integration of large-scale brain networks of emotional regulation. These findings add to our knowledge of how individual variations in our moral values could be reflected by intrinsic brain network organization and deepen our understanding of the relationship between emotion and cognition during evaluations of moral values.  相似文献   

18.
Brain imaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), provide a unique opportunity to study the neurobiology of human memory. As these methods can measure most of the brain, it is possible to examine the operations of large-scale neural systems and their relation to cognition. Two neuroimaging studies, one concerning working memory and the other episodic memory retrieval, serve as examples of application of two analytic methods that are optimised for the quantification of neural systems, structural equation modelling, and partial least squares. Structural equation modelling was used to explore shifting prefrontal and limbic interactions from the right to the left hemisphere in a delayed match-to-sample task for faces. A feature of the functional network for short delays was strong right hemisphere interactions between hippocampus, inferior prefrontal, and anterior cingulate cortices. At longer delays, these same three areas were strongly linked, but in the left hemisphere, which was interpreted as reflecting change in task strategy from perceptual to elaborate encoding with increasing delay. The primary manipulation in the memory retrieval study was different levels of retrieval success. The partial least squares method was used to determine whether the image-wide pattern of covariances of Brodmann areas 10 and 45/47 in right prefrontal cortex (RPFC) and the left hippocampus (LGH) could be mapped on to retrieval levels. Area 10 and LGH showed an opposite pattern of functional connectivity with a large expanse of bilateral limbic cortices that was equivalent for all levels of retrieval as well as the baseline task. However, only during high retrieval was area 45/47 included in this pattern. The results suggest that activity in portions of the RPFC can reflect either memory retrieval mode or retrieval success depending on other brain regions to which it is functionally linked, and imply that regional activity must be evaluated within the neural context in which it occurs. The general hypothesis that learning and memory are emergent properties of large-scale neural network interactions is discussed, emphasising that a region can play a different role across many functions and that role is governed by its interactions with anatomically related regions.  相似文献   

19.
Three cognitive components may play a crucial role in both memory awareness and in anosognosia for memory deficit (AMD): (1) a personal data base (PDB), i.e., a memory store that contains “semantic” representations about the self, (2) monitoring processes (MPs) and (3) an explicit evaluation system (EES), or comparator, that assesses and binds the representations stored in the PDB with information obtained from the environment.We compared both the behavior and the functional connectivity (as assessed by resting-state fMRI) of AMD patients with aware patients and healthy controls. We found that AMD is associated with an impoverished PDB, while MPs are necessary to successfully update the PDB.AMD was associated with reduced functional connectivity within both the default-mode network and in a network that includes the left lateral temporal cortex, the hippocampus and the insula. The reduced connectivity between the hippocampus and the insular cortex was correlated with AMD severity.  相似文献   

20.
Recent interest has emerged in understanding the neural mechanisms by which deficits in emotion regulation (ER) early in development may relate to later depression. Corticolimbic alterations reported in emotion dysregulation and depression may be one possible link. We examined the relationships between emotion dysregulation in school age, corticolimbic resting-state functional connectivity (rs-FC) in preadolescence, and depressive symptoms in adolescence. Participants were 143 children from a longitudinal preschool onset depression study who completed the Children Sadness Management Scale (CSMS; measuring ER), Child Depression Inventory (CDI-C; measuring depressive symptoms), and two resting-state MRI scans. Rs-FC between four primary regions of interest (ROIs; bilateral dorsolateral prefrontal cortex [dlPFC] and amygdala) and six target ROIs thought to contribute to ER were examined. Findings showed that ER in school age did not predict depressive symptoms in adolescence, but did predict preadolescent increases in dlPFC-insula and dlPFC-ventromedial PFC rs-FC across diagnosis, as well as increased dlPFC-dorsal anterior cingulate cortex (dACC) rs-FC in children with a history of depression. Of these profiles, only dlPFC-dACC rs-FC in preadolescence predicted depressive symptoms in adolescence. However, dlPFC-dACC connectivity did not mediate the relationship between ER in school age and depressive symptoms in adolescence. Despite the absence of a direct relationship between ER and depressive symptoms and no significant rs-FC mediation, the rs-FC profiles predicted by ER are consistent with the hypothesis that emotion dysregulation is associated with abnormalities in top-down control functions. The extent to which these relationships might confer greater risk for later depression, however, remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号