首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors investigated the emergence of independent control of body segments in bimanual tasks involving either voluntary or involuntary trunk motion by tracking the transition from an ego- to an exocentric mode of postural control during childhood (i.e., from body-referenced orientation to externally referenced action). A paradigm combining a seated manual task and various trunk manipulations described the coordination strategies used by 24 children at different ages (2 to 9 years) and by adults. The following questions were asked: (a) When do children begin to dissociate upper limb movements from those of the trunk? (b) What segmental strategies are exhibited by each age group (2-3, 4-6, and 7-9 years, and adults)? Kinematic analyses revealed that younger children (2-6 years) used either the trunk or the support surface as reference to orient the limbs. Older children (7-9 years) began to use a gravitational reference frame similar to that of adults; they uncoupled upper limb motion from the trunk in either voluntary or imposed conditions. Young children patterned the forearm trajectory after the initiating segment (support surface or the trunk), thus reducing the degrees of freedom during the dual task. Echoing previous reports, 7-9 years of age appears to be a critical period in which children master postural control and develop an internal representation of body scheme.  相似文献   

2.
The authors investigated the emergence of independent control of body segments in bimanual tasks involving either voluntary or involuntary trunk motion by tracking the transition from an ego- to an exocentric mode of postural control during childhood (i.e., from body-referenced orientation to externally referenced action). A paradigm combining a seated manual task and various trunk manipulations described the coordination strategies used by 24 children at different ages (2 to 9 years) and by adults. The following questions were asked: (a) When do children begin to dissociate upper limb movements from those of the trunk? (b) What segmental strategies are exhibited by each age group (2-3, 4-6, and 7-9 years, and adults)? Kinematic analyses revealed that younger children (2-6 years) used either the trunk or the support surface as reference to orient the limbs. Older children (7-9 years) began to use a gravitational reference frame similar to that of adults; they uncoupled upper limb motion from the trunk in either voluntary or imposed conditions. Young children patterned the forearm trajectory after the initiating segment (support surface or the trunk), thus reducing the degrees of freedom during the dual task. Echoing previous reports, 7-9 years of age appears to be a critical period in which children master postural control and develop an internal representation of body scheme.  相似文献   

3.
During stance, head extension increases postural sway, possibly due to interference with sensory feedback. The sit-to-stand movement is potentially destabilizing due to the development of momentum as the trunk flexes forward and the body transitions to a smaller base of support. It is unclear what role head orientation plays in the postural and movement characteristics of the sit-to-stand transition. The authors assessed how moving from sitting to standing with head-on-trunk extension compared with moving with the head neutral or flexed, or with moving with the head facing forward in space (which would involve head-on-trunk extension, but not head-in-space extension) in healthy, young participants. Head-on-trunk extension increased center of pressure variability, but decreased movement velocities, movement duration, and trunk flexion compared with flexed and neutral head-on-trunk orientations. Similarities in movement characteristics between head-on-trunk extension and the forward head-in-space orientation suggest that stabilizing the head in space does not fully counteract the postural and movement changes due to head-on-trunk extension. Findings suggest that proprioceptive feedback from the neck muscles contributes to the regulation of posture and movement, and therefore should not be overlooked in research on the role of sensory feedback in postural control.  相似文献   

4.
During stance, head extension increases postural sway, possibly due to interference with sensory feedback. The sit-to-stand movement is potentially destabilizing due to the development of momentum as the trunk flexes forward and the body transitions to a smaller base of support. It is unclear what role head orientation plays in the postural and movement characteristics of the sit-to-stand transition. The authors assessed how moving from sitting to standing with head-on-trunk extension compared with moving with the head neutral or flexed, or with moving with the head facing forward in space (which would involve head-on-trunk extension, but not head-in-space extension) in healthy, young participants. Head-on-trunk extension increased center of pressure variability, but decreased movement velocities, movement duration, and trunk flexion compared with flexed and neutral head-on-trunk orientations. Similarities in movement characteristics between head-on-trunk extension and the forward head-in-space orientation suggest that stabilizing the head in space does not fully counteract the postural and movement changes due to head-on-trunk extension. Findings suggest that proprioceptive feedback from the neck muscles contributes to the regulation of posture and movement, and therefore should not be overlooked in research on the role of sensory feedback in postural control.  相似文献   

5.
The authors investigated postural and arm control in seated reaches while providing trunk support at midribs and pelvic levels in adults. Kinematics and electromyography of the arm and ipsiliateral and contralateral paraspinal muscles were examined before and during reaching. Kinematics remained constant across conditions, but changes were observed in neuromuscular control. With midribs support, the ipsilateral cervical muscle showed either increased anticipatory activity or earlier compensatory muscle responses, suggesting its major role in head stabilization. The baseline activity of bilateral lumbar muscles was enhanced with midribs support, whereas with pelvic support, the activation frequency of paraspinal muscles increased during reaching. The results suggest that segmental trunk support in healthy adults modulates ipsilateral or contralateral paraspinal activity while overall kinematic outputs remain invariant.  相似文献   

6.
Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during a precision fitting task as task constraints became more difficult. Participants fit a block through an opening as arm kinematics, trunk kinematics, and center of pressure data were collected. During the fitting task, the precision, postural, and visual constraints of the task were manipulated. Young children adopted a strategy where they first move their trunk toward the opening and then stabilize their trunk (freeze degrees of freedom) as the precision manual task is being performed. In contrast, adults and older children make compensatory trunk movements as the task is being performed. The 10-year-olds were similar to adults under the less constrained task conditions, but they resembled the 7-year-olds under the more challenging tasks. The ability to either suppress or allow postural fluctuations based on the constraints of a suprapostural task begins to develop at around 10 years of age. This ability, once developed, allows children to learn specific segmental movements required to complete a task within an environmental context.  相似文献   

7.
Frequency characteristics of head stabilization were examined during locomotor tasks in healthy young adults(N = 8) who performed normal walking and 3 walking tasks designed to produce perturbations primarily in the horizontal plane. In the 3 walking tasks, the arms moved in phase with leg movement, with abnormally large amplitude, and at twice the frequency of leg movement. Head-in-space angular velocity was examined at the predominant frequencies of trunk motion. Head movements in space occurred at low frequencies (< 4.0 Hz) in all conditions and at higher frequencies (> 4.0 Hz) when the arms moved at twice the frequency of the legs. Head stabilization strategies were determined from head-on-trunk with respect to trunk frequency profiles derived from angular velocity data. During natural walking at low frequencies (< 3.0 Hz), head-on-trunk movement was less than trunk movement. At frequencies 3.0 Hz or greater, equal and opposite compensatory movement ensured head stability. When arm swing was altered, compensatory movement guaranteed head stability at all frequencies. Head stabilization was successful for frequencies up to 10.0 Hz during locomotor tasks. Maintaining head stability at high frequencies during voluntary tasks suggests that participants used feedforward mechanisms to coordinate head and trunk movements. Maintenance of head stability during dynamic tasks allows optimal conditions for vestibulo-ocular reflex function.  相似文献   

8.
Prior work demonstrates that humans spontaneously synchronize their head and trunk kinematics to a broad range of driving frequencies of perceived mediolateral motion prescribed using optical flow. Using a closed-loop visuomotor error augmentation task in an immersive virtual environment, we sought to understand whether unifying visual with vestibular and somatosensory feedback is a control goal during human walking, at least in the context of head and trunk stabilization. We hypothesized that humans would minimize visual errors during walking – i.e., those between the visual perception of movement and actual movement of the trunk. We found that subjects did not minimize errors between the visual perception of movement and actual movement of the head and trunk. Rather, subjects increased mediolateral trunk range of motion in response to error-augmented optical flow with positive feedback gains. Our results are more consistent with our alternative hypothesis – that visual feedback can override other sensory modalities and independently compel adjustments in head and trunk position. Also, aftereffects following exposure to error-augmented optical flow included longer, narrower steps and reduced mediolateral postural sway, particularly in response to larger amplitude positive feedback gains. Our results allude to a recalibration of head and trunk stabilization toward more tightly regulated postural control following exposure to error-augmented visual feedback. Lasting reductions in mediolateral postural sway may have implications for using error-augmented optical flow to enhance the integrity of walking balance control through training, for example in older adults.  相似文献   

9.
Estimation of whether an object is reachable from a specific body position constitutes an important aspect in effective motor planning. Researchers who estimate reachability by way of motor imagery with adults consistently report the tendency to overestimate, with some evidence of a postural effect (postural stability hypothesis). This idea suggests that perceived reaching limits depend on an individual's perceived postural constraints. Based on previous work with adults, the authors expected a significant postural effect with the Reach 2 condition, as evidenced by reduced overestimation. Furthermore, the authors hypothesized that the postural effect would be greater in younger children. They then tested these propositions among children aged 7, 9, and 11 years by asking them to estimate reach while seated (Reach 1) and in the more demanding posture of standing on 1 foot and leaning forward (Reach 2). Results indicated no age or condition difference, therefore providing no support for a postural effect. When the authors compared these data to a published report of adults, a developmental difference emerged. That is, adults recognize the perceived postural constraint of the standing position resulting in under- rather than overestimation, as displayed in the seated condition. Although preliminary, these observations suggest that estimates of reach (action planning) continue to be refined between late childhood and young adulthood.  相似文献   

10.
Frequency characteristics of head stabilization were examined during locomotor tasks in healthy young adults (N = 8) who performed normal walking and 3 walking tasks designed to produce perturbations primarily in the horizontal plane. In the 3 walking tasks, the arms moved in phase with leg movement, with abnormally large amplitude, and at twice the frequency of leg movement. Head-in-space angular velocity was examined at the predominant frequencies of trunk motion. Head movements in space occurred at low frequencies (< 4.0 Hz) in all conditions and at higher frequencies (> 4.0 Hz) when the arms moved at twice the frequency of the legs. Head stabilization strategies were determined from head-on-trunk with respect to trunk frequency profiles derived from angular velocity data. During natural walking at low frequencies (< 3.0 Hz), head-on-trunk movement was less than trunk movement. At frequencies 3.0 Hz or greater, equal and opposite compensatory movement ensured head stability. When arm swing was altered, compensatory movement guaranteed head stability at all frequencies. Head stabilization was successful for frequencies up to 10.0 Hz during locomotor tasks Maintaining head stability at high frequencies during voluntary tasks suggests that participants used feedforward mechanisms to coordinate head and trunk movements. Maintenance of head stability during dynamic tasks allows optimal conditions for vestibulo-ocular reflex function.  相似文献   

11.
In the absence of visual supervision, tilting the head sideways gives rise to deviations in spatially defined arm movements. The purpose of this study was to determine whether these deviations are restricted to situations with impoverished visual information. Two experiments were conducted in which participants were positioned supine and reproduced with their unseen index finger a 2 dimensional figure either under visual supervision or from memory (eyes closed). In the former condition, the figure remained visible (using a mirror). In the latter condition, the figure was first observed and then reproduced from memory. Participants' head was either aligned with the trunk or tilted 30° towards the left or right shoulder. In experiment 1, participants observed first the figure with the head straight and then reproduced it with the head either aligned or tilted sideways. In Experiment 2, participants observed the figure with the head in the position in which the figure was later reproduced. Results of Experiment 1 and 2 showed deviations of the motor reproduction in the direction opposite to the head in both the memory and visually-guided conditions. However, the deviations decreased significantly under visual supervision when the head was tilted left. In Experiment 1, the perceptual visual bias induced by head tilt was evaluated. Participants were required to align the figure parallel to their median trunk axis. Results revealed that the figure was perceived as parallel with the trunk when it was actually tilted in the direction of the head. Perceptual and motor responses did not correlate. Therefore, as long as visual feedback of the arm is prevented, an internal bias, likely originating from head/trunk representation, alters hand-motor production irrespectively of whether visual feedback of the figure is available or not.  相似文献   

12.
Darling WG  Robert B 《Perception》2005,34(1):17-30
Eight young adults adjusted a line located on one side of a computer display parallel to internally specified Earth-fixed vertical (display in frontal plane), to the horizontal trunk-fixed anterior-posterior axis (display in horizontal plane), and to an oblique line (display in horizontal and vertical planes). All tasks were completed in a dark room with the head and trunk in both a standard erect posture and varied postures. Errors were lowest when setting the line to internally specified vertical in the frontal plane and to an oblique line in the horizontal plane when head and trunk orientations were varied. Constant errors for setting one line parallel to a second line were in opposite directions when the second line was located on the left versus right side of the display, but did not differ in direction when setting the line parallel to internally specified axes. Also, the oblique effect was preserved when the head and trunk were tilted to various orientations, suggesting that it results from integration of an internally specified gravitational reference with visual input. We conclude that the visual perceptual coordinate system uses internally specified vertical and, when available, a visually specified horizontal reference axis to define object orientation.  相似文献   

13.
Action observation and action execution are tightly coupled on a neurophysiological and a behavioral level, such that visually perceiving an action can contaminate simultaneous and subsequent action execution. More specifically, observing a model in postural disequilibrium was shown to induce an increase in observers' body sway. Here we reciprocally questioned the role of observers' motor system in the contagion process by comparing participants' body sway when watching displays of antero-posterior vs. lateral imbalance. Indeed, during upright standing, biomechanical constraints differ along the antero-posterior (A-P) and medio-lateral (M-L) axes; hence an impact of observers' postural constraints on the contagion response would result in different reactions to both types of stimuli. In response to the displays, we recorded greater area of center of pressure (CoP) displacement when watching forward/backward compared to left/right imbalance. In addition, after normalizing A-P and M-L CoP displacements by a control condition (fixation cross), A-P CoP path length when viewing forward imbalance tended to be higher than M-L CoP path length when viewing imbalance to the left or right. These results indicate that postural contagion is promoted when the display is compatible with observers' motor stabilization strategy which is mainly oriented along the A-P axis. In terms of clinical application, this study brings new indications for adaptation of observational training devices in rehabilitation programs.  相似文献   

14.
The effects of background visual roll stimulation on postural control, manual controlf andselfmotion perception were investigated in this study. In the main experiment, 8 subjects were exposed to wide field-of-view background scenes that were tilted and static, continuously rotating, or sinusoidally rotating at frequencies between 0.03 and 0.50 Hz, as well as a baseline condition. The subjects performed either a postural control task (maintain an upright stance) or a manual control task (keep an unstable central display horizontally level). Root-mean square (RMS) error in both the postural and manual control tasks was low in the static tilt condition and extremely high in response to continuous rotation. Although the phases of the postural and manual responses were highly similar, the power and RMS error generated by the sinusoidal visual background stimulation peaked at a lower frequency in the postural task. Vection ratings recorded at the end of the postural and manual trials somewhat paralleled tbafrequency tuning differences between tasks, which a subsequent experiment showed to be the result of the differential motion of the central display rather than the differential positioning of the subject. In general, these results show that the dynamic characteristics of visual orientation systems vary according to the specific motor and/or perceptual system investigated.  相似文献   

15.
Visual orientation during lateral tilt is viewed in terms of orientation constancy. The postural systems involved in the maintenance of constancy are considered to be those of the otolith, neck and trunk. The relative contribution of these systems was investigated by obtaining visual verticality judgments immediately upon and several minutes after head, body, and trunk tilts. Due to the apparent non-adaptation of the otolith system any changes in visual orientation resulting from prolonged tilt would be attributed to adaptation of the proprioceptive system stimulated. For 30° head tilt visual orientation over-constancy was reduced by about 2°, reflecting the influence of the neck system. Prolonged body tilts of 30°, 60° and 90° reduced the constancy operating by approximately 1°, 3° and 8°, respectively. This was taken to indicate the contribution of the trunk system, which increased with increasing degrees of body tilt. The above interpretations received strong support from experiments involving trunk tilt, which stimulates only the neck and trunk systems.  相似文献   

16.
This study investigates the relative contribution of body parts in the elaboration of a whole-body egocentric attraction phenomenon previously observed during earth-based judgments. This was addressed through a particular earth-based task requiring estimating the possibility of passing under a projected line, imagining a forward horizontal displacement. Different postural configurations were tested, involving whole-body tilt, trunk tilt alone or head tilt alone. Two legs positions relative to the trunk were manipulated. Results showed systematic deviations of the subjective “passability” toward the tilt, linearly related to the tilt magnitude. For each postural configuration, the egocentric influence appeared to be highly dependent on the position of trunk and head axes, whereas the legs position appeared not relevant. When compared to the whole-body tilt condition, tilting the trunk alone consistently reduced the amount of the deviation toward the tilt, whereas tilting the head alone consistently increased it. Our results suggest that several specific effects from multiple body parts can account for the global deviation of the estimates observed during whole-body tilt. Most importantly, we support that the relative contribution of the body segments could mainly depend on a reweighting process, probably based on the reliability of sensory information available for a particular postural set.  相似文献   

17.
Trunk motor control is essential for athletic performance, and inadequate trunk motor control has been linked to an increased risk of developing low back and lower limb injury in athletes. Research is limited in comparing relationships between trunk neuromuscular control, postural control, and trunk proprioception in athletes from different sporting backgrounds. To test for these relationships, collegiate level long distance runners and golfers, along with non-athletic controls were recruited. Trunk postural control was investigated using a seated balance task. Neuromuscular control in response to sudden trunk loading perturbations was measured using electromyography and kinematics. Proprioceptive ability was examined using active trunk repositioning tasks. Both athlete groups demonstrated greater trunk postural control (less centre of pressure movement) during the seated task compared to controls. Athletes further demonstrated faster trunk muscle activation onsets, higher muscle activation amplitudes, and less lumbar spine angular displacement in response to sudden trunk loading perturbations when compared to controls. Golfers demonstrated less absolute error and variable error in trunk repositioning tasks compared to both runners and controls, suggestive of greater proprioceptive ability. This suggests an interactive relationship between neuromuscular control, postural control, and proprioception in athletes, and that differences exist between athletes of various training backgrounds.  相似文献   

18.
Visual orientation judgments were made during right head tilt, left body tilt, and left trunk tilt, each of 30 deg. In these postures the otolith, neck, and trunk systems are stimulated in pairs. The hypothesis that the visual vertical during trunk tilt is equal to the algebraic sum ofthose in the same direction ofbody tilt and the opposite head tilt was tested and accepted. This result demonstrates the interaction of these postural systems in visual orientation, and complements the confirmation of the same hypothesis for the visual aftereffect following prolonged tilt.  相似文献   

19.
Our trunks influence where we perform actions in space. Thus, trunk direction may define a region of spacethat is accorded special treatment by the attention system. We investigated conditions under which a trunk orientation bias for attention might be relevant for healthy adults. Three experiments compared visual detection performance for participants standing and walking on a treadmill. Together, the experiments disambiguate the relative contributions of motor activity, motor load, and cognitive load on trunk orientation biases. In Experiment 1, trunk orientation biases (i.e., faster target detection for targets in front of the body midline) were observed in both forward and sideways walking conditions, but not in standing conditions. In Experiment 2, we ruled out the notion that the trunk orientation bias arose from increased motor activity; in fact, the bias was greatest when participants walked at an unusually slow pace. In Experiment 3, we directly compared motor load with cognitive load in a dual-task paradigm; cognitive load influenced overall performance speed, but only motor load produced trunk orientationbias. These results suggest that a trunk orientation bias emerges during walking and motor load conditions.  相似文献   

20.
It is argued that, contrary to the views of some theorists, the role of gravitational cues is essentially one of maintaining orientation constancy. In support of this claim, it is shown that the loss of relevant gravitational information when the body is supine results in a significant increase in the disorienting effects of both a tilted visual frame and tilt of the head relative to the trunk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号