首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文旨在探讨慢性应激性抑郁发生过程中眶额叶多巴胺D1受体对谷氨酸(glutamic acid, Glu)及其N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid, NMDA)受体的NR2B亚基的影响。实验通过建立慢性不可预见性温和应激(chronic unpredictable mild stress, CUMS)抑郁模型, 结合眶额叶微量注射多巴胺D1受体激动剂SKF38393和多巴胺D1受体拮抗剂SCH23390, 运用糖水偏爱测试、悬尾实验和敞箱实验等方法检测动物的行为表现, 采用高效液相色谱法(high-performance liquid chromatography, HPLC)和蛋白质免疫印迹法(Western blot, WB)来检测眶额叶内谷氨酸、多巴胺含量及NR2B和多巴胺D1受体的表达。结果显示, 与对照组相比, CUMS组大鼠表现出明显的抑郁样行为变化, 且眶额叶多巴胺含量降低, 其D1型受体表达降低, 谷氨酸含量升高, 其NMDA受体的NR2B亚基也明显上调; 注射SKF38393后可明显改善应激引起的抑郁样行为, 且眶额叶谷氨酸含量显著下降, NMDA受体的NR2B亚基表达也有所降低; 正常大鼠注射多巴胺D1受体拮抗剂SCH23390, 大鼠表现出和CUMS模型组相似的抑郁样行为, 且眶额叶谷氨酸含量升高, 其NMDA受体的NR2B亚基也明显上调。以上结果表明, 慢性不可预见性应激可能使眶额叶多巴胺释放减少, 从而使谷氨酸过量释放, NMDA受体过度激活, 导致抑郁发生。多巴胺抗抑郁作用是通过D1型受体抑制谷氨酸及其NMDA受体NR2B亚基表达来实现。  相似文献   

2.
N-methyl-D-aspartate (NMDA) receptors play an important role in excitatory neurotransmission and mediate synaptic plasticity associated with learning and memory. NMDA receptors are composed of two NR1 and two NR2 subunits and the identity of the NR2 subunit confers unique electrophysiologic and pharmacologic properties to the receptor. The precise role of NR2C-containing receptors in vivo is poorly understood. We have performed a battery of behavioral tests on NR2C knockout/nβ-galactosidase knock-in mice and found no difference in spontaneous activity, basal anxiety, forced-swim immobility, novel object recognition, pain sensitivity and reference memory in comparison to wildtype counterparts. However, NR2C knockout mice were found to exhibit deficits in fear acquisition and working memory compared to wildtype mice. Deficit in fear acquisition correlated with lack of fear conditioning-induced plasticity at the thalamo-amygdala synapse. These findings suggest a unique role of NR2C-containing receptors in associative and executive learning representing a novel therapeutic target for deficits in cognition.  相似文献   

3.
Involvement of BDNF receptor TrkB in spatial memory formation   总被引:11,自引:0,他引:11       下载免费PDF全文
The N-methyl-D-aspartate (NMDA) receptors are involved in long-term potentiation (LTP), and are phosphorylated by several tyrosine kinases including a Src-family tyrosine kinase Fyn. Brain-derived neurotrophic factor (BDNF) is a neurotrophin, which also enhances hippocampal synaptic transmission and efficacy by increasing NMDA receptor activity. Here, we show that Fyn is a key molecule linking the BDNF receptor TrkB with NMDA receptors, which play an important role in spatial memory formation in a radial arm maze. Spatial learning induced phosphorylation of TrkB, Fyn, and NR2B, but not NR2A, in the hippocampus. Fyn was coimmunoprecipitated with TrkB and NR2B, and this association was increased in well-trained rats compared with control animals. Continuous intracerebroventricular infusion of PP2, a tyrosine kinase inhibitor, in rats delayed memory acquisition in the radial arm maze, but PP2-treated animals reached the same level of learning as the controls. The phosphorylation of Fyn and NR2B, but not TrkB, was diminished by PP2 treatment. Our findings suggest the importance of interaction between BDNF/TrkB signaling and NMDA receptors for spatial memory in the hippocampus.  相似文献   

4.
Physical pain (induced by tissue damage) and psychological pain (induced by surprising incentive loss) share a set of common neural substrates, but little is known about their interactions. The present research studied such interactions using the formalin test to induce physical pain and consummatory successive negative contrast (cSNC) to induce psychological pain. In the formalin test, animals receive an intradermal injection of formalin (1%) in a hind paw. In cSNC, rats with free access to 32% sucrose show a sharp suppression of drinking behavior after a downshift to 4% sucrose, compared to rats that always receive 4% sucrose. In Experiment 1, formalin administration before the first and second 32-to-4% sucrose downshift trials enhanced cSNC. In Experiment 2, a similar treatment before the first downshift trial after a 16-to-4% sucrose downshift, which normally produces little or no evidence of cSNC, significantly increased cSNC. In Experiment 3, using a 32-to-4% sucrose downshift procedure similar to that of Experiment 1, no effects were observed following formalin administration immediately after Trial 11. Thus, no evidence was found that the effects of physical pain on cSNC were caused by changes in memory consolidation. The procedures used in these experiments offer a new approach to study the neural substrates of interactions between physical and psychological pain.  相似文献   

5.
Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the NR1/NR2B receptor antagonist CP101,606 (0.5, 1.5, or 4.5 microg/amygdala) or the NR1/NR2A-preferring antagonist NVP-AAM077 (0.075, 0.25, 0.75, or 2.5 microg/amygdala) into the amygdala prior to either fear conditioning (i.e., light-shock pairings) or fear-potentiated startle testing. CP101,606 nonmonotonically disrupted fear conditioning but did not disrupt fear expression. NVP-AAM077 dose-dependently disrupted fear conditioning as well as fear expression. The results suggest that amygdala NR1/NR2B receptors play a special role in fear memory formation, whereas NR1/NR2A receptors participate more generally in synaptic transmission.  相似文献   

6.
Glutamate receptor-dependent neural plasticity is thought to be implicated in memory processes. Ionotropic N-methyl-D-aspartate- (NMDA) sensitive and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate- (AMPA) sensitive glutamate receptors have been particularly studied for their role in synaptic plasticity. Drugs can alter AMPA and NMDA receptor neurotransmission by competing for the glutamate site or other sites on these receptor proteins. Variants of the protein subunits forming AMPA and NMDA heteromers contribute to the complexity of pharmacological activity at these receptors. The NMDA receptor has numerous modulatory centers, including the glycine binding site, NR2B protein specific binding site, and an intrachannel (PCP) binding site. In this study, the accuracy and rate of rats performing under a Fixed Consecutive Number (FCN) operant task were measured after administrations of site-selective AMPA and NMDA receptor modulators. Test compounds included two glycine site NMDA agonists [(+)HA 966 and D-cycloserine], two NR2-B site NMDA antagonists (eliprodil and ifenprodil), an NMDA channel blocking antagonist (MK 801), and a competitively acting AMPA receptor antagonist (NBQX). The accuracy of FCN performance was not affected by response-rate-altering doses of (+) HA 966, D-cycloserine, eliprodil, ifenprodil, or NBQX. MK 801, on the other hand, reduced performance accuracy at several doses. These results are consistent with earlier studies suggesting that AMPA antagonists minimally affect working memory and that glycine and NR2B protein-specific modulatory sites may have advantages as targets for the development of medications intended to alter NMDA receptor-mediated transmission.  相似文献   

7.
问黎敏  安书成  刘慧 《心理学报》2012,44(10):1318-1328
为探讨慢性不可预见性温和应激(chronic unpredictable mild stress, CUMS)诱发抑郁样行为发生中海马5-羟色胺1A受体(5-hydroxytryptamine receptor 1A, 5-HT1AR)表达与作用, 及其对谷氨酸N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid, NMDA)受体和α-氨基羟甲基异恶唑丙酸(α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid, AMPA)受体的影响。通过建立CUMS动物模型, 给应激抑郁模型大鼠海马微量注射5-HT1A受体激动剂、给正常大鼠海马微量注射5-HT1A受体拮抗剂, 测量大鼠体重变化率, 并采用糖水偏爱测试、旷场实验和悬尾实验等方法对大鼠进行行为学检测, 运用Western blot和ELISA方法检测大鼠海马组织中5-HT1AR和NMDAR和AMPAR的关键亚基的表达以及磷酸化水平。结果显示, 与对照组相比, CUMS组大鼠表现出抑郁样行为, 海马5-HT1AR、AMPA受体的GluR2/3亚基表达及磷酸化明显降低, NMDA受体的NR1和NR2B亚基表达及磷酸化显著增加; 正常大鼠海马微量注射5-HT1A受体拮抗剂WAY100635, 动物行为学表现及AMPA受体、NMDA受体表达及磷酸化水平均与CUMS组相同; 注射5-HT1A受体激动剂8-OH-DPAT能逆转应激诱导的上述改变。以上结果表明, CUMS诱发抑郁样行为与海马5-HT1AR表达下降, AMPAR表达量及磷酸化水平降低, NMDAR表达量及磷酸化水平升高有关。5-HT通过5-HT1AR产生抗抑郁作用。5-HT1AR激动剂抗抑郁作用与降低NMDAR表达量及磷酸化水平, 提高AMPAR表达量及磷酸化水平密切相关。  相似文献   

8.
Extinction of conditioned fear involves new learning that inhibits but does not eliminate the original fear memory. This inhibitory learning is thought to require activation of NMDA receptors (NMDAr) within the basolateral amygdala (BLA). However, once extinction has been learned, the role played by the BLA during subsequent extinction procedures remains unknown. The present study examined the role of neuronal activity and NMDAr activation in rats receiving their first or second extinction of context fear. We found that BLA infusion of DL-APV, a competitive antagonist of NMDAr, depressed fear responses at both the first and second extinction. It impaired learning extinction but spared and even facilitated relearning extinction. BLA infusion of muscimol, a GABA(A) agonist, produced a similar outcome, suggesting that DL-APV not only blocked NMDAr-dependent plasticity but also disrupted neuronal activity. In contrast, infusion of ifenprodil, a more selective antagonist of NMDAr containing the NR2B subunit, did not depress fear responses but impaired short- and long-term inhibition of fear at both the first and second extinction. Therefore, we suggest that relearning extinction normally requires NMDAr containing the NR2B subunit in the BLA. However, simultaneous blockade of these receptors and neuronal activity in the BLA results in compensatory learning that is able to promote long-term re-extinction. These data are consistent with a current model that attributes fear extinction to interactions between several neural substrates, including the amygdala and the medial prefrontal cortex.  相似文献   

9.
Application of brain-derived neurotrophic factor (BDNF) to hippocampal neurons has profound effects on glutamatergic synaptic transmission. Both pre- and postsynaptic actions have been identified that depend on the age and type of preparation. To understand the nature of this diversity, we have begun to examine the mechanisms of BDNF action in cultured dissociated embryonic hippocampal neurons. Whole-cell patch-clamp recording during iontophoretic application of glutamate revealed that BDNF doubled the amplitude of induced inward current. Coexposure to BDNF and the NMDA receptor antagonist AP-5 markedly reduced, but did not entirely prevent, the increase in current. Coexposure to BDNF and ifenprodil, an NR2B subunit antagonist, reproduced the response observed with AP-5, suggesting BDNF primarily enhanced activity of NR2B-containing NMDA receptors with a lesser effect on non-NMDA receptors. Protein kinase involvement was confirmed with the broad spectrum inhibitor staurosporine, which prevented the response to BDNF. PKCI19-31 and H-89, selective antagonists of PKC and PKA, had no effect on the response to BDNF, whereas autocamtide-2-related inhibitory peptide, an antagonist of CaM kinase II, reduced response magnitude by 60%. These results demonstrate the predominant role of a specific NMDA receptor subtype in BDNF modulation of hippocampal synaptic transmission.  相似文献   

10.
In situ hybridization histochemistry was used to assess the effect of auditory stimulation with natural contact calls on expression of NR2A and NR2B NMDA subunit mRNAs in neurons of the thalamic auditory relay nucleus ovoidalis (Ov) of a vocal learning parrot species, the budgerigar (Melopsittacus undulatus). The results showed that both the core (Ov) and ventromedial shell subdivisions (Ovm) of ovoidalis contained neurons expressing NR2A and NR2B mRNA in no-stimulation control subjects and that the distributions of neurons expressing these subunit mRNAs were very similar in both the core and shell of Ov. Contact call stimulation (5, 30 and 180 min) resulted in substantial increases of 50-60% in the number of neurons expressing NR2A and NR2B mRNAs in both the core and shell. Staining intensity, as measured by the optical density of stained somata approximately doubled compared to controls for both NR2 subunits in the 5 and 30 min conditions, but declined from 30 to 180 min. In all conditions, the density, but not staining intensity, of neurons expressing NR2B exceeded NR2A expression. Furthermore, the density of neurons expressing both subunit mRNAs in call stimulation conditions was greater in the core than in the shell despite the fact that total neuronal density was approximately 20% higher in the shell. Previous experiments have shown that call stimulation is more effective at inducing expression of the immediate early gene zenk in the Ov shell than core; however the present results do not indicate that either NR2A or NR2B mRNA expression mediates this effect since neither subunit exhibits greater expression in Ovm. Ca(++) release is needed for immediate early gene expression, however and, notably, Ovm contains large numbers of neurons containing CGRP, a peptide which has been shown to increase cytosolic Ca(++) levels.  相似文献   

11.
双酚A (bisphenol, BPA)是一种广泛应用于塑料制品的环境内分泌干扰物, 具有弱雌激素和抗雄激素活性, 与雌激素受体有一定的亲和力。本实验探讨长期BPA暴露对成年小鼠恐惧记忆的影响及其神经机制。将9周龄雄性小鼠暴露于BPA (0.4、4、40 mg/kg/d) 90 d, 建立小鼠亚慢性BPA暴露模型后, 进行场景性条件恐惧训练, 然后分别在电击后1 hr及24 hr检测小鼠的僵立时间, 同时在电击前、电击后1 hr及24 hr检测海马相关蛋白表达变化。结果表明, BPA (4、40 mg/kg/d)暴露延长小鼠场景性条件恐惧训练后1 hr及24 hr的僵立时间。Western blot蛋白检测结果显示, 行为训练前, BPA降低了小鼠NMDA受体NR1亚基表达水平, 上调组蛋白去乙酰化酶2表达。行为训练后1 hr及24 hr, BPA促进海马NMDA受体亚基NR1和组蛋白H3乙酰化表达, 抑制组蛋白去乙酰化酶2表达, 同时促进ERK1/2磷酸化水平。以上结果表明, 长期BPA暴露提高成年小鼠恐惧记忆获得的同时延长恐惧记忆的保持; 该作用可能通过激活海马的ERK1/2通路而改变核内组蛋白乙酰化和NMDA受体水平进行。  相似文献   

12.
Olfactory discrimination (OD) learning consists of two phases: an initial N-methyl-D-aspartate (NMDA) receptor-sensitive rule-learning phase, followed by an NMDA receptor (NMDAR)-insensitive pair-learning phase. The rule-learning phase is accompanied by changes in the composition and function of NMDARs at synapses in the piriform cortex, resulting in a high level of the NR2a subunit relative to NR2b. Here we show that the learning-induced changes in NMDAR composition in the adult piriform cortex are due to a decrease in the level of the NR2b subunit protein, rather than an increase in the level of NR2a. Chronic administration of an NMDAR open channel blocker during training delays OD learning and blocks learning-induced changes in NMDAR subunit composition. However, the animals still learn the OD task. Our data demonstrate that learning can occur in the absence of activity-dependent regulation of NMDAR composition, suggesting differences in the mechanism for long-term maintenance of NMDAR-dependent and NMDAR-independent learning.  相似文献   

13.
The mechanisms underlying the complex effects of acute stress on memory are incompletely understood. Previous work suggests that the activation of N-methyl-d-aspartate (NMDA) receptors specifically containing GluN2B subunits may underlie the disruptions in spatial memory retrieval caused by acute stress (Wong et al., 2007 PNAS 104:11471). The present experiments were designed to assess whether a similar mechanism is involved in recognition memory. Recognition memory retrieval was assessed in Sprague–Dawley rats using an object recognition test and an object–place recognition test, both of which rely on patterns of spontaneous exploration. Exposure to acute stress for 30 min immediately before the test phase of either test disrupted memory retrieval. Administration of the GluN2B-selective antagonist Ro25-6981 (6 mg/kg; i.p.) enhanced memory in the object recognition test regardless of whether animals were exposed to acute stress. In the object–place test, Ro25-6981 had no effect on memory retrieval in the absence of stress but promoted memory following acute stress. These data highlight the specific contributions made by GluN2B-containing NMDA receptors to recognition memory for different types of stimuli.  相似文献   

14.
Polyamines, such as spermidine and spermine, have been reported to improve memory retention through the activation of N-methyl-d-aspartate receptors (NMDAr). However whether polyamine agonists and antagonists alter extinction remains unclear. In the current study, we investigated whether spermidine and polyamine antagonists that selectively block the NR2B subunit at the NMDAr alter the extinction of contextual conditioned fear in male Wistar rats. The bilateral intra-hippocampal administration of exogenous spermidine (2 nmol/site) immediately after, but not 6 h after extinction training, facilitated the extinction of fear conditioning. The injection of the NMDAr antagonists arcaine (0.2 nmol/site), ifenprodil (20 nmol/site) and traxoprodil (0.2 nmol/site), disrupted fear extinction and, at doses that had no effect per se, reversed the facilitatory effect of spermidine on fear extinction. These results suggest that exogenous and endogenous polyamines facilitate the extinction of contextual conditioned fear through activation of NR2B subunit-containing NMDAr in the hippocampus. Since extinction-based exposure therapy is widely used as treatment for a number of anxiety-related disorders, including phobias and post-traumatic stress, the currently reported facilitation of extinction by polyaminergic agents suggest these compounds as putative candidates for drug development.  相似文献   

15.
Although much has been learned about the role of the amygdala in Pavlovian fear conditioning, relatively little is known about an involvement of this structure in more complex aversive learning, such as acquisition of an active avoidance reaction. In the present study, rats with a pretraining injection of the N-methyl-D-aspartate (NMDA) receptor antagonist, 2-amino-5-phosphonopentanoic acid (APV), into the basolateral amygdala (BLA) were found to be impaired in two-way active avoidance learning. During multitrial training in a shuttle box, the APV-injected rats were not different from the controls in sensitivity to shock or in acquisition of freezing to contextual cues. However, APV injection led to impaired retention of contextual fear when tested 48 h later, along with an attenuation of c-Fos expression in the amygdala. These results are consistent with the role of NMDA receptors of the BLA in long-term memory of fear, previously documented in Pavlovian conditioning paradigms. The APV-induced impairment in the active avoidance learning coincided with deficits in directionality of the escape reaction and in attention to conditioned stimuli. These data indicate that normal functioning of NMDA receptors in the basolateral amygdala is required during acquisition of adaptive instrumental responses in a shuttle box but is not necessary for acquisition of short-term contextual fear in this situation.  相似文献   

16.
Abstract

Variable practice promotes a higher level of motor learning than constant practice. The glutamate receptors, n-methyl-d-aspartate (NMDA) and alfa-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA), have been associated with the changes in motor cortex that occur throughout the process of motor learning. Considering that, it is possible that variable practice is more associated with the NMDA and AMPA receptors than constant practice. This study aimed ao investigating the association between the glutamate receptors, NMDA and AMPA, and constant and variable practice schedules. Seventy-eight male mice practiced the rotarod task in a constant or variable scheduling, in two consecutive days (acquisition phase). Learning tests were performed 24?h and 10?days after the end of the acquisition phase. Variable practice was more associated with the NMDA receptor and had a greater AMPA receptor expression than constant practice. The results suggest that the benefits of variable practice are result of both the greater dependency on the NMDA receptor and the greater AMPA receptor expression.  相似文献   

17.
Rodent models of motor skill learning include skilled forelimb reaching and acrobatic locomotor paradigms. This study characterizes motor skill learning in the accelerated rotarod task. Thirty Long-Evans rats (300-400 g) were trained on an accelerated rotarod (1cm/s(2)) over eight consecutive sessions (=days, 20 trials each). Improvement in rotarod velocities mastered before falling off the rod was observed within and between sessions (plateau after five sessions). Intrasession improvement was incompletely retained at the beginning of the next day's session. Over several training sessions, intrasession improvement diminished, suggesting a ceiling effect. After 1 week of pause, the rotarod skill was retained. Locomotor exercise in a running wheel for 30 min before the first rotarod session did not affect intrasession improvement. Running-wheel exposure for 6 days did not diminish the rate of rotarod skill learning (steepness of the learning curve) but improved overall performance (upward shift of curve). Video analysis of gait on the rotarod showed that rats developed a motor strategy by modifying their gait patterns during training. The data demonstrate that rotarod improvement is not the result of enhanced general locomotor ability or fitness, which are trained in the running wheel, but requires a change in the motor strategy to master the task. Accelerated rotarod training can be regarded a valid paradigm for motor skill learning over short (intrasession, minutes) and long time frames (intersession, days).  相似文献   

18.
N-Methyl-D-aspartate (NMDA) receptors appear to be involved in CS processing and memory consolidation. The present paper analyzed the effect of the non-competitive NMDA receptor antagonist Dizocilpine maleate (MK-801) on Latent Inhibition (LI)-retarded learning of a CS-US association after to-be-CS preexposures at time of testing, using Wistar rats as experimental subjects. If NMDA receptors are involved in CS processing, MK-801 administration should affect LI. In fact, previous experiments revealed that a 2.0mg/kg MK-801 dose, administered 20 h before preexposure and conditioning, abolished LI in a conditioned taste-aversion paradigm. In the present paper, MK-801 (0.2 mg/kg) was either injected after preexposure, after conditioning, or after both preexposure and conditioning stages. LI was abolished when MK-801 was injected after preexposure, but not when it was injected after conditioning. These results support the role of NMDA receptors in CS processing and memory consolidation.  相似文献   

19.
The aim of the present research was to verify whether the impairment of retention induced by the N-methyl-d-aspartate (NMDA) receptor blocker (+)-10,11-dihydro-5-methyl-5H-dibenzo[a,d]cycloheptene-5,10 imine (MK-801) can be reversed by memory-enhancing treatments. Adult female Wistar rats were trained and tested in a step-down inhibitory avoidance task (0.3-mA foot shock, 24-h training-test interval). Animals were given an ip injection of saline (SAL) or MK-801 (0.0625 mg/kg) 30 minutes before training, and an ip injection of SAL, epinephrine (EPI) (25 microg/kg), the opioid receptor antagonist naloxone (NAL) (0.4 mg/kg), the glucocorticoid receptor agonist dexamethasone (DEX) (0.3 mg/kg), or glucose (GLU) (320 mg/kg) immediately after training. There was an impairment of inhibitory avoidance retention in the MK-801-SAL, MK-801-EPI, MK-801-NAL, MK-801-DEX, and MK-801-GLU groups. There was an enhancement of retention in the SAL-EPI, SAL-NAL, SAL-DEX, and SAL-GLU groups. A control experiment showed that the amnestic effects of MK-801 could not be attributed to decreased reactivity to the foot shock. The results suggest that memory-enhancing treatments directed at modulatory mechanisms do not reverse the memory impairment induced by NMDA receptor blockade.  相似文献   

20.
Three studies were done to determine the effects of a brief 2-h sexual experience on the maintenance of sexual behavior in male rats; the effects on the experience-based maintenance of sexual behavior of gonadal hormones (study 1), a protein-synthesis inhibitor (study 2), and an N-methyl-D-aspartate receptor blocker (study 3) were determined. Naive male rats were provided with a 2-h sexual experience with sexually receptive hormonally "primed" females or they received no experience. In the first study animals under each of these conditions then underwent castration or sham surgery. In the second study animals under each of the experience conditions received either cycloheximide (CYX) or saline (SAL; 1.5 or 3.0 mg/kg CYX or SAL sc, 10 min after the experience). In study 3 experienced and inexperienced animals received either 0.07 or 0.10 mg/kg MK-801 ip (15 min before the experience). In all studies animals were tested for sexual behavior 3, 6, and 9 days after surgery or injection. These studies showed that the most consistent effect of a 2-h sexual experience was to facilitate the initiation of mounting, especially on the first test; they show, further, that most experience effects were reduced or eliminated if animals were castrated between experience and test, if they received a drug (CYX) at the time of the experience that blocks the synthesis of proteins, or if they received an NMDA receptor antagonist prior to the experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号