首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although video offers many advantages for recording human eye orientation, it involves such low temporal resolution (60 Hz) that it seems an unpromising method for evaluating the dynamics of rapid (saccadic) eye movements. This study demonstrates, nevertheless, that such measurements can provide surprisingly reliable estimates of the peak velocity of larger saccades. Simulations of 60-Hz sampling of eye position during idealized saccades provided replicated estimates of “apparent peak velocity.” The results indicate that when saccadic amplitude is about 10° or larger, estimates of peak velocity would on average be biased downward by less than 10%, with standard deviations due to measurement timing of less than 5%. Experimental data (from recordings of 10° and 20° saccades with customized video) demonstrate that these theoretical sources of uncertainty are considerably smaller than the trialto- trial variability in performance of real saccades. Reliability of video recording, however, rapidly deteriorates when saccades become smaller than about 10°.  相似文献   

2.
Speed-accuracy trade-off characteristic of horizontal saccadic eye movements were examined in this study. Unlike limb movements, saccadic eye movements are preprogrammed, unidimensional, and do not involve target impact. Hence, they provide an optimal test of the impulse variability account of the speed-accuracy trade-off in rapid movements. Subjects were required to alternately look at two target lights as fast and as accurately as possible for a period of 10 s. Target lights subtended angles of 5,10,15, and 20°. By restricting target distances to less than 20° of arc, the speed-accuracy relation was examined for single horizontal saccadic movements of the eye. Movement of the dominant eye was tracked with an infra-red eye monitoring device. Fifty saccadic movements of the eye were recorded for each target distance and used to compute the average amplitude, duration, and velocity of eye movements, as well as, movement endpoint variability. An increase in both average velocity and movement endpoint variability with increasing movement amplitude was found. This, together with the unique features of the eye movement system, support the impulse variability account of the speed-accuracy trade-off in rapid movements.  相似文献   

3.
Speed-accuracy trade-off characteristic of horizontal saccadic eye movements were examined in this study. Unlike limb movements, saccadic eye movements are preprogrammed, unidimensional, and do not involve target impact. Hence, they provide an optimal test of the impulse variability account of the speed-accuracy trade-off in rapid movements. Subjects were required to alternately look at two target lights as fast and as accurately as possible for a period of 10 s. Target lights subtended angles of 5, 10, 15, and 20 degrees. By restricting target distances to less than 20 degrees of arc, the speed-accuracy relation was examined for single horizontal saccadic movements of the eye. movement of the dominant eye was tracked with an infra-red eye monitoring device. Fifty saccadic movements of the eye were recorded for each target distance and used to compute the average amplitude, duration, and velocity of eye movements, as well as, movement endpoint variability. An increase in both average velocity and movement endpoint variability with increasing movement amplitude was found. This, together with the unique features of the eye movement system, support the impulse variability account of the speed-accuracy trade-off in rapid movements.  相似文献   

4.
In a number of studies, we have demonstrated that the spatial-temporal coupling of eye and hand movements is optimal for the pickup of visual information about the position of the hand and the target late in the hand's trajectory. Several experiments designed to examine temporal coupling have shown that the eyes arrive at the target area concurrently with the hand achieving peak acceleration. Between the time the hand reached peak velocity and the end of the movement, increased variability in the position of the shoulder and the elbow was accompanied by a decreased spatial variability in the hand. Presumably, this reduction in variability was due to the use of retinal and extra-retinal information about the relative positions of the eye, hand and target. However, the hand does not appear to be a slave to the eye. For example, we have been able to decouple eye movements and hand movements using Müller-Lyer configurations as targets. Predictable bias, found in primary and corrective saccadic eye movements, was not found for hand movements, if on-line visual information about the target was available during aiming. That is, the hand remained accurate even when the eye had a tendency to undershoot or overshoot the target position. However, biases of the hand were evident, at least in the initial portion of an aiming movement, when vision of the target was removed and vision of the hand remained. These findings accent the versatility of human motor control and have implications for current models of visual processing and limb control.  相似文献   

5.
Deficits in smooth pursuit eye movements are well documented in schizophrenia and schizotypic psychopathology. The status of eye tracking dysfunction (ETD) as an endophenotype for schizophrenia liability is relatively robust. However, the relation of ETD to schizophrenia-related deviance in the general population has not been confirmed. This study examined smooth pursuit eye tracking and schizotypal personality features in the general population. Smooth pursuit eye movement and schizotypal features were measured in 300 adult community subjects. The sample included both sexes, subjects with a wide age and educational range, and subjects with no prior history of psychosis. Primary outcome measures were peak gain (eye velocity/target velocity), catch-up saccade rate, and schizotypal feature scores. Total schizotypal features were significantly associated with decreased peak gain and were associated at the trend level with increased catch-up saccade rate. These associations were essentially unchanged after controlling for age, sex, and intellectual level effects. These data confirm a hypothesized association between schizotypal features and poorer eye tracking performance (principally, peak gain) in the general population as well as support the conceptualization of ETD as an endophenotype for schizophrenia liability.  相似文献   

6.
This study investigated how frequency demand and motion feedback influenced composite ocular movements and eye-hand synergy during manual tracking. Fourteen volunteers conducted slow and fast force-tracking in which targets were displayed in either line-mode or wave-mode to guide manual tracking with target movement of direct position or velocity nature. The results showed that eye-hand synergy was a selective response of spatiotemporal coupling conditional on target rate and feedback mode. Slow and line-mode tracking exhibited stronger eye-hand coupling than fast and wave-mode tracking. Both eye movement and manual action led the target signal during fast-tracking, while the latency of ocular navigation during slow-tracking depended on the feedback mode. Slow-tracking resulted in more saccadic responses and larger pursuit gains than fast-tracking. Line-mode tracking led to larger pursuit gains but fewer and shorter gaze fixations than wave-mode tracking. During slow-tracking, incidences of saccade and gaze fixation fluctuated across a target cycle, peaking at velocity maximum and the maximal curvature of target displacement, respectively. For line-mode tracking, the incidence of smooth pursuit was phase-dependent, peaking at velocity maximum as well. Manual behavior of slow or line-mode tracking was better predicted by composite eye movements than that of fast or wave-mode tracking. In conclusion, manual tracking relied on versatile visual strategies to perceive target movements of different kinematic properties, which suggested a flexible coordinative control for the ocular and manual sensorimotor systems.  相似文献   

7.
The authors investigated whether movement-planning and feedback-processing abilities associated with the 2 hand-hemisphere systems mediate illusion-induced biases in manual aiming and saccadic eye movements. Although participants' (N = 23) eye movements were biased in the direction expected on the basis of a typical Müller-Lyer configuration, hand movements were unaffected. Most interesting, both left- and right-handers' eye fixation onset and time to hand peak velocity were earlier when they aimed with the left hand than they were when they aimed with the right hand, regardless of the availability of vision for online movement control. They thus adapted their eye-hand coordination pattern to accommodate functional asymmetries. The authors suggest that individuals apply different movement strategies according to the abilities of the hand and the hemisphere system used to produce the same outcome.  相似文献   

8.
Aimed flexion movements of the arm of different amplitude and duration were studied. Velocity and acceleration traces of movements with equal duration but different amplitude were equal, apart from a scaling factor (ratio between movement amplitudes). After appropriate scaling, EMG activity of the first agonist burst for these movements superimposed. This was not true for EMG activity in the antagonist muscle. For movements with equal amplitude, but different duration, the time to peak acceleration was constant for all MT'. Except for this fact, traces of acceleration, velocity, and agonist activity following the time of peak acceleration were about equal after appropriate scaling in time and amplitude. The integral of EMG activity in the first agonist burst increased linearly with peak velocity. For the antagonist burst, the integrated EMG activity increased more than proportionally. During movements made as fast as possible, subjects used a different strategy by varying the duration of the accelerating phase for movements of different amplitude. Movement amplitude was achieved by adjusting the duration of the agonist burst and the onset time for the antagonist muscle. Amplitude of the antagonist burst was constant within a narrow range for movements of different amplitude. These results did not change when the inertial mass was doubled by loading the arm with an additional mass.  相似文献   

9.
Aimed flexion movements of the arm of different amplitude and duration were studied. Velocity and acceleration traces of movements with equal duration but different amplitude were equal, apart from a scaling factor (ratio between movement amplitudes). After appropriate scaling, EMG activity of the first agonist burst for these movements superimposed. This was not true for EMG activity in the antagonist muscle.

For movements with equal amplitude, but different duration, the time to peak acceleration was constant for all MT’s. Except for this fact, traces of acceleration, velocity, and agonist activity following the time of peak acceleration were about equal after appropriate scaling in time and amplitude. The integral of EMG activity in the first agonist burst increased linearly with peak velocity. For the antagonist burst, the integrated EMG activity increased more than proportionally.

During movements made as fast as possible, subjects used a different strategy by varying the duration of the accelerating phase for movements of different amplitude. Movement amplitude was achieved by adjusting the duration of the agonist burst and the onset time for the antagonist muscle. Amplitude of the antagonist burst was constant within a narrow range for movements of different amplitude.

These results did not change when the inertial mass was doubled by loading the arm with an additional mass.  相似文献   

10.
The authors investigated how visual information from the nondominant and dominant eyes are utilized to control ongoing dominant hand movements. Across 2 experiments, participants performed upper-limb pointing movements to a stationary target or an imperceptibly shifted target under monocular-dominant, monocular-nondominant, and binocular viewing conditions. Under monocular-dominant viewing conditions, participants exhibited better endpoint precision and accuracy. On target jump trials, participants spent more time after peak limb velocity and significantly altered their trajectories toward the new target location only when visual information from the dominant eye was available. Overall, the results suggest that the online visuomotor control processes that typically take place under binocular viewing conditions are significantly influenced by input from the dominant eye.  相似文献   

11.
The authors investigated whether and, if so, how velocity information is used to control predictive manual pointing movements and saccades. Participants (N = 6) intercepted an occluded moving target as if it were still visible. They kept their eyes fixated while the target moved. The target traveled over a fixed distance and changed its velocity on the way. The presentation time of the final velocity was varied. Both the eye and the hand overshot the slow target and undershot the fast target, particularly when the duration of the final velocity was short. Thus, responses were biased in the direction of the target's initial velocity. The error seemed to arise because participants did not take their latency into account when aiming at the target. Instead, they strategically aimed farther ahead when the target was fast. Amplitude was also more related to the position of velocity change than to final velocity duration. Both findings suggest that target velocity is not extrapolated but that individuals add an increment to the position of velocity change.  相似文献   

12.
Numerous studies have demonstrated effects of word frequency on eye movements during reading, but the precise timing of this influence has remained unclear. The fast priming paradigm was previously used to study influences of related versus unrelated primes on the target word. Here, we use this procedure to investigate whether the frequency of the prime word has a direct influence on eye movements during reading when the prime–target relation is not manipulated. We found that with average prime intervals of 32 ms readers made longer single fixation durations on the target word in the low than in the high frequency prime condition. Distributional analyses demonstrated that the effect of prime frequency on single fixation durations occurred very early, supporting theories of immediate cognitive control of eye movements. Finding prime frequency effects only 207 ms after visibility of the prime and for prime durations of 32 ms yields new time constraints for cognitive processes controlling eye movements during reading. Our variant of the fast priming paradigm provides a new approach to test early influences of word processing on eye movement control during reading.  相似文献   

13.
The authors investigated whether and, if so, how velocity information is used to control predictive manual pointing movements and saccades. Participants (N = 6) intercepted an occluded moving target as if it were still visible. They kept their eyes fixated while the target moved. The target traveled over a fixed distance and changed its velocity on the way. The presentation time of the final velocity was varied. Both the eye and the hand overshot the slow target and undershot the fast target, particularly when the duration of the final velocity was short. Thus, responses were biased in the direction of the target's initial velocity. The error seemed to arise because participants did not take their latency into account when aiming at the target. Instead, they strategically aimed farther ahead when the target was fast. Amplitude was also more related to the position of velocity change than to final velocity duration. Both findings suggest that target velocity is not extrapolated but that individuals add an increment to the position of velocity change.  相似文献   

14.
This study synchronized sampling of point of gaze (PG) and hand movements in a fast aiming task, using a 60- and a 120-Hz sampling frequency. The subjects moved eyes, head, hand, and trunk freely. For limb kinematics, a significant difference between sampling conditions was only found for the number of accelerations in the profile following peak velocity of the hand. For PG movements, no differences were found for initiation time, saccade angle, fixation duration, and overall number of saccades. However, significant differences were observed for saccade duration. Previously, an invariant feature was found for the ratio of PG and hand response times (50%). For both sampling frequencies, a significant correlation and, thus, temporal coupling was found between PG response time and time to peak acceleration for the hand. Depending on the measures required, a 60-Hz sampling of PG and hand movements may provide as meaningful results as a 120-Hz sampling.  相似文献   

15.
Ocular pursuit movements allow moving objects to be tracked with a combination of smooth movements and saccades. The principal objective is to maintain smooth eye velocity close to object velocity, thus minimising retinal image motion and maintaining acuity. Saccadic movements serve to realign the image if it falls outside the fovea, the area of highest acuity. Pursuit movements are often portrayed as voluntary but their basis lies in processes that sense retinal motion and can induce eye movements without active participation. The factor distinguishing pursuit from such reflexive movements is the ability to select and track a single object when presented with multiple stimuli. The selective process requires attention, which appears to raise the gain for the selected object and/or suppress that associated with other stimuli, the resulting competition often reducing pursuit velocity. Although pursuit is essentially a feedback process, delays in motion processing create problems of stability and speed of response. This is countered by predictive processes, probably operating through internal efference copy (extra-retinal) mechanisms using short-term memory to store velocity and timing information from prior stimulation. In response to constant velocity motion, the initial response is visually driven, but extra-retinal mechanisms rapidly take over and sustain pursuit. The same extra-retinal mechanisms may also be responsible for generating anticipatory smooth pursuit movements when past experience creates expectancy of impending object motion. Similar, but more complex, processes appear to operate during periodic pursuit, where partial trajectory information is stored and released in anticipation of expected future motion, thus minimising phase errors associated with motion processing delays.  相似文献   

16.
《Brain and cognition》2009,69(3):309-326
Ocular pursuit movements allow moving objects to be tracked with a combination of smooth movements and saccades. The principal objective is to maintain smooth eye velocity close to object velocity, thus minimising retinal image motion and maintaining acuity. Saccadic movements serve to realign the image if it falls outside the fovea, the area of highest acuity. Pursuit movements are often portrayed as voluntary but their basis lies in processes that sense retinal motion and can induce eye movements without active participation. The factor distinguishing pursuit from such reflexive movements is the ability to select and track a single object when presented with multiple stimuli. The selective process requires attention, which appears to raise the gain for the selected object and/or suppress that associated with other stimuli, the resulting competition often reducing pursuit velocity. Although pursuit is essentially a feedback process, delays in motion processing create problems of stability and speed of response. This is countered by predictive processes, probably operating through internal efference copy (extra-retinal) mechanisms using short-term memory to store velocity and timing information from prior stimulation. In response to constant velocity motion, the initial response is visually driven, but extra-retinal mechanisms rapidly take over and sustain pursuit. The same extra-retinal mechanisms may also be responsible for generating anticipatory smooth pursuit movements when past experience creates expectancy of impending object motion. Similar, but more complex, processes appear to operate during periodic pursuit, where partial trajectory information is stored and released in anticipation of expected future motion, thus minimising phase errors associated with motion processing delays.  相似文献   

17.
Mitsudo H  Ono H 《Perception》2007,36(1):125-134
Two psychophysical experiments were conducted to investigate the mechanism that generates stable depth structure from retinal motion combined with extraretinal signals from pursuit eye movements. Stimuli consisted of random dots that moved horizontally in one direction (ie stimuli had common motion on the retina), but at different speeds between adjacent rows. The stimuli were presented with different speeds of pursuit eye movements whose direction was opposite to that of the common retinal motion. Experiment 1 showed that the rows moving faster on the retina appeared closer when viewed without eye movements; however, they appeared farther when pursuit speed exceeded the speed of common retinal motion. The 'transition' speed of the pursuit eye movement was slightly, but consistently, larger than the speed of common retinal motion. Experiment 2 showed that parallax thresholds for perceiving relative motion between adjacent rows were minimum at the transition speed found in experiment 1. These results suggest that the visual system calculates head-centric velocity, by adding retinal velocity and pursuit velocity, to obtain a stable depth structure.  相似文献   

18.
Three types of eye movements, saccadic, reading, and pursuit, were recorded from 6 college subjects, two in each by the electrooculographic and photoelectric methods simultaneously. A deviation index (DI), which is the standard deviation divided by the mean, was devised to compare the precision of recording amplitude deflection, and a proportion index (PI), which is ml divided by M2, was devised to compare the mean amplitude indirectly between these two methods. Results showed that the proportion indexes of three types of eye movements were comparable, and the mean index of 0.54 indicated that the amplification in the electrooculographic method was about half as much as that in the photoelectric. The mean deviation index of 0.132 vs 0.135 was, again, comparable, meaning that these two methods of recording amplitude deflections are of about the same degree of magnitude and precision. Certain qualitative differences regarding the amplitude and velocity peak deflection between these two methods were also noted.  相似文献   

19.
Lighted points that moved as if located on the rim of a rolling wheel were displayed to subjects whose task was to describe the pattern they perceived. The perceived patterns could be classified into one of four categories ranging from cycloidal to circular motion. Pursuit eye movements were controlled by having subjects track a fixation point that moved in the direction of the rolling wheel on a path just above the wheel’s rim. With respect to the translatory velocity of the rolling wheel, the velocity of the fixation point was 100%, 67%, 33%, or 0% (i.e., stationary). The patterns traced out by the points on the wheel were perceived to become increasingly circular as pursuit eye movements more closely matched the translatory speed of the rolling wheel. This is taken to support Stoper’s hypothesis that pursuit eye movements can establish a frame of reference for motion analysis.  相似文献   

20.
It has often been reported that subjects prefer to use a strategy in which they vary movement velocity and peak amplitude in a linear fashion. In this study, control of velocity and amplitude in rapid reciprocating movements of the interphalangeal joint of the thumb was investigated by examining movement trajectories and patterns of activity in the extensor pollicis longus (EPL) and flexor pollicis longus (FPL) muscles. In controlling either amplitude or peak flexion velocity without constraint, subjects always used a strategy in which peak extension velocity and peak flexion velocity had strong linear correlations with movement amplitude. When they were required to keep either amplitude or peak flexion velocity fixed their movements were still biased toward a strategy in which peak velocity and movement amplitude covaried. It is suggested that the preferred strategy is related to a basic principle of scaling the magnitude and duration of a velocity profile in order to achieve different movement amplitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号