首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to investigate the roles of gazing behavior during piano duo performance by highlighting coordination among performers. Experiment 1 was conducted under four conditions: invisible, only the body visible, only the head visible, and face -to -face. Experiment 2 was conducted under three conditions: invisible, only the movable head visible, and only the fixed head visible. In both experiments, performers looked toward each other just before temporal changes during coordination moments, which improved synchronization accuracy. The results also showed that gazing without movement cues to some extent facilitated synchronization, although asynchrony was greater under the restricted- movement condition than under the free- movement condition. The following results were obtained:(1)?Mutual gaze is important for reducing timing lag between performers. (2)?Mutual gaze modulates remarkable and arbitrary temporal expressions, such as fermata. (3)?Performers may utilize movements as visual cues for strict synchronization.  相似文献   

2.
The ability of non-human primates to follow the gaze of other individuals has recently received much attention in comparative cognition. The aim of the present study was to investigate the emergence of this ability in a chimpanzee infant. The infant was trained to look at one of two objects, which an experimenter indicated by one of four different cue conditions: (1) tapping on the target object with a finger; (2) pointing to the target object with a finger; (3) gazing at the target object with head orientation; or (4) glancing at the target object without head orientation. The subject was given food rewards independently of its responses under the first three conditions, so that its responses to the objects were not influenced by the rewards. The glancing condition was tested occasionally, without any reinforcement. By the age of 13 months, the subject showed reliable following responses to the object that was indicated by the various cues, including glancing alone. Furthermore, additional tests clearly showed that the subject's performance was controlled by the "social" properties of the experimenter-given cues but not by the non-social, local-enhancing peripheral properties. Electronic Publication  相似文献   

3.
The present study was designed to investigate modifications in the triphasic EMG pattern during a forearm-flexion task at maximum speed which required three levels of movement accuracy. 36 subjects participated in 4 training sessions, performing a total of 200 repetitions of each movement. The fastest movement time was associated with the least accurate movement task. Likewise, the slowest movement time was found for the movement requiring the greatest accuracy. Differences in the duration and amplitude of agonist 1 activity, the start of agonist 2 activity, and the start and amplitude of antagonist activity were observed for the three movements. The results indicate that agonist 1 provides a propulsive force to initiate limb movement. The antagonist EMG activity was thought responsible for braking and correcting limb movement. Modifications in agonist 2 activity suggest this burst is related to movement velocity.  相似文献   

4.
Effect of contraction intensity [100%, 75%, 50%, and 25% maximum voluntary contraction (MVC)] and movement velocity [0 degrees (isometric)], 50 degrees, 100 degrees, 200 degrees, and 400 degrees/sec. [isovelocities]) on root mean square amplitude (SEMG-RMS) and median frequency power spectrum (SEMG-MNF) of vastus lateralis (VL) surface electromyography was investigated with ten healthy female university students. Peak torque (PT), mean torque (MT), SEMG-MNF, and SEMG-RMS, analyzed using separate repeated-measures analyses of variance (p < or = .05), indicated: (1) an inverse relation between PT and MT and movement velocity, (2) greater SEMG-MNF values during all isovelocity conditions compared with isometric conditions, with highest values occurring at 50 degrees /sec. and at 100% and 75% MVC, and (3) at all contraction intensities SEMG-RMS values were higher during dynamic movements than isometric movements and highest at 200 degrees /sec. Isovelocity contractions were inferred to facilitate a greater recruitment of fast-twitch fibers (via increased SEMG-MNF), which was intensified at 50 degrees /sec., whereas greater overall muscle activation was found at 200 degrees /sec.  相似文献   

5.
We compared the timed latencies of saccadic eye movement during isometric contraction of the bilateral and unilateral shoulder girdle elevators in a sitting posture. Muscle contraction force was increased in 10% increments from 0% to 60% of the maximal voluntary contraction (MVC) of each side. Saccadic latency was measured as the latency to the beginning of eye movement toward the lateral target that was moved at random intervals in 20 degree amplitude jumps. Eye movement was measured using the electro-oculogram technique. During bilateral contraction, saccadic latency decreased until 30% MVC and then began to increase at 40% MVC. During unilateral contraction, saccadic latency decreased until 30% MVC in a similar pattern as in bilateral condition, was constant from 30% MVC to 50% MVC, followed by a slight increase at 60% MVC. The saccadic latencies at 10% and 40-60% MVC were significantly shorter during unilateral contraction than bilateral contraction. Thus, the relative force for producing a marked shortening of saccadic latency is observed within a wider range during unilateral contraction than bilateral contraction.  相似文献   

6.
Several experiments have been performed, to examine whether nonhuman primates are able to make use of experimenter-given manual and facial (visual) cues to direct their attention to a baited object. Contrary to the performance of prosimians and monkeys, great apes repeatedly have shown task efficiency in experiments such as these. However, many great ape subjects used have been "enculturated" individuals. In the present study, 3 nonenculturated orangutans (Pongo pygmaeus) were tested for their ability to use experimenter-given pointing, gazing, and glancing cues in an object-choice task. All subjects readily made use of the pointing gesture. However, when subjects were left with only gazing or glancing cues, their performance deteriorated markedly, and they were not able to complete the task.  相似文献   

7.
Although many studies have examined performance improvements of ballistic movement through practice, it is still unclear how performance advances while maintaining maximum velocity, and how the accompanying triphasic electromyographic (EMG) activity is modified. The present study focused on the changes in triphasic EMG activity, i.e., the first agonist burst (AG1), the second agonist burst (AG2), and the antagonist burst (ANT), that accompanied decreases in movement time and error. Twelve healthy volunteers performed 100 ballistic wrist flexion movements in ten 10-trial sessions under the instruction to "maintain maximum velocity throughout the experiment and to stop the limb at the target as fast and accurately as possible". Kinematic parameters (position and velocity) and triphasic EMG activities from the agonist (flexor carpi radialis) and antagonist (extensor carpi radialis) muscles were recorded. Comparison of the results obtained from the first and the last 10 trials, revealed that movement time, movement error, and variability of amplitudes reduced with practice, and that maximum velocity and time to maximum velocity remained constant. EMG activities showed that AG1 and AG2 durations were reduced, whereas ANT duration did not change. Additionally, ANT and AG2 latencies were reduced. Integrated EMG of AG1 was significantly reduced as well. Analysis of the alpha angle (an index of the rate of recruitment of the motoneurons) showed that there was no change in either AG1 or AG2. Correlation analysis of alpha angles between these two bursts further revealed that the close relationship of AG1 and AG2 was kept constant through practice. These findings led to the conclusion that performance improvement in ballistic movement is mainly due to the temporal modulations of agonist and antagonist muscle activities when maximum velocity is kept constant. Presumably, a specific strategy is consistently applied during practice.  相似文献   

8.
The purpose of this research was to investigate changes in the control of movement, using EMG and kinematic variables, over practice by children. Children in three age groups, 7, 9, and 11 yr., performed 60 trials of an elbow-flexion movement. Correct movements consisted of a 60 degrees angular movement of the forearm in 800 msec. The analysis of biceps brachii and triceps brachii muscle EMG activity, movement displacement and timing error, and movement velocity patterns indicated changes in motor performance with practice. All age groups improved performance with practice and also exhibited a decrease in biceps EMG activity with practice. Only movement-time error and time to peak triceps muscle activity differed between the age groups. The 11-yr.-old group significantly altered the timing of the antagonistic response to stop the movement over the practice session. This change is suggested to be related to the greater information-processing ability of these children and the development of appropriate movement strategies to perform the movement task successfully. Other changes observed in the EMG data appear similar to changes observed in studies of adults.  相似文献   

9.
Coordination of intentional upper limb movement concurrent with supporting postural activity was investigated in adult males under varying task conditions. Seven subjects performed a 60 deg rapid elbow flexion (focal movement) to a target in movement times of 170, 195, or 220 ms while standing. Measurement of center of pressure via a force platform revealed that subjects adopted individual premovement postural preferences such that locus of center of pressure resided in one predominant quadrant of the foot. Each premovement postural preference was accompanied by one most common postural muscle onset sequence as indicated by bilateral EMG analysis of rectus femoris and biceps femoris. In addition, onset times for postural muscles exhibiting anticipatory postural activity occurred earlier relative to biceps branchii as focal movement velocity increased. The finding that each premovement postural condition was accompanied by one particular postural muscle onset sequence suggested that postural synergies were flexibly organized with respect to onset sequence.  相似文献   

10.
Abstract

It has been demonstrated that the intended force (subjective estimation of force) does not always match to actual force without external feedback. The purpose of this study was to compare the influence of ballistic and tonic contractions on the relationship between the intended and actual force. Subjects produced isometric force at requested percentages of their MVC (20, 40, 60 and 80%) based on subjective estimation of force under two conditions (tonic and ballistic conditions). The tonic condition was to maintain force production, whereas the ballistic condition was to produce force as fast as possible. As a result, the actual force amplitude, the coefficient of variance and EMG amplitude were larger under the ballistic contraction compared with the tonic condition, even the same intended force levels. These results suggest that different motor unit activity and control systems in the ballistic and tonic contractions could alter the relationship between the intended force and the actual force.  相似文献   

11.
《Human movement science》1999,18(2-3):307-343
Four subjects produced coordinated movements, consisting of flexion and extension of the wrist in ipsilateral (right wrist only), contralateral (left wrist only), inphase (both wrists in flexion or both in extension) and antiphase (one wrist in flexion, the other in extension) conditions. Electromyographic (EMG) activity was recorded from right wrist flexor and extensor muscles. In one session, transcranial magnetic stimuli (TMS) of the left motor cortex, around threshold intensity, evoked short-latency responses in the right wrist extensors and flexors. In another session, the median nerve at the cubital fossa was stimulated to elicit an H-reflex in the right flexor carpi radialis (rFCR). A movement cycle was divided into 8 segments. In total, 10 identical stimuli were delivered during each segment in each condition, at two movement frequencies. The magnitude of the EMG reponses to TMS was modulated markedly during movements made in the ipsilateral condition, and in both bimanual conditions. EMG activity was greater, and motor-evoked potentials (MEPs) were larger in the antiphase condition than in the inphase condition. When the amplitudes of the MEPs were normalised with respect to background EMG, no significant differences between the bimanual conditions were obtained. For H-reflexes, significant differences between the two bimanual conditions were observed, suggesting differences in levels of excitability of the Ia afferent pathway. These differences were attributed to segmental input associated with changes in muscle length arising from limb movement, and upon descending input to the spinal cord, possibly mediated by Renshaw cell inhibition. During rhythmic passive movement of the right limb, H-reflexes were inhibited and MEPs potentiated in a cyclic fashion. Passive movement of the contralateral left limb resulted in inhibition of both responses.PsycINFO classification: 2330; 2530; 2540  相似文献   

12.
Aimed flexion movements of the arm of different amplitude and duration were studied. Velocity and acceleration traces of movements with equal duration but different amplitude were equal, apart from a scaling factor (ratio between movement amplitudes). After appropriate scaling, EMG activity of the first agonist burst for these movements superimposed. This was not true for EMG activity in the antagonist muscle. For movements with equal amplitude, but different duration, the time to peak acceleration was constant for all MT'. Except for this fact, traces of acceleration, velocity, and agonist activity following the time of peak acceleration were about equal after appropriate scaling in time and amplitude. The integral of EMG activity in the first agonist burst increased linearly with peak velocity. For the antagonist burst, the integrated EMG activity increased more than proportionally. During movements made as fast as possible, subjects used a different strategy by varying the duration of the accelerating phase for movements of different amplitude. Movement amplitude was achieved by adjusting the duration of the agonist burst and the onset time for the antagonist muscle. Amplitude of the antagonist burst was constant within a narrow range for movements of different amplitude. These results did not change when the inertial mass was doubled by loading the arm with an additional mass.  相似文献   

13.
Aimed flexion movements of the arm of different amplitude and duration were studied. Velocity and acceleration traces of movements with equal duration but different amplitude were equal, apart from a scaling factor (ratio between movement amplitudes). After appropriate scaling, EMG activity of the first agonist burst for these movements superimposed. This was not true for EMG activity in the antagonist muscle.

For movements with equal amplitude, but different duration, the time to peak acceleration was constant for all MT’s. Except for this fact, traces of acceleration, velocity, and agonist activity following the time of peak acceleration were about equal after appropriate scaling in time and amplitude. The integral of EMG activity in the first agonist burst increased linearly with peak velocity. For the antagonist burst, the integrated EMG activity increased more than proportionally.

During movements made as fast as possible, subjects used a different strategy by varying the duration of the accelerating phase for movements of different amplitude. Movement amplitude was achieved by adjusting the duration of the agonist burst and the onset time for the antagonist muscle. Amplitude of the antagonist burst was constant within a narrow range for movements of different amplitude.

These results did not change when the inertial mass was doubled by loading the arm with an additional mass.  相似文献   

14.
The present study investigated facilitation of corticospinal excitability during motor imagery of wrist movement with visual or quantitative inspection of background electromyographic (EMG) activity. Ten healthy participants imagined wrist extension from a first-person perspective in response to a start cue. Transcranial magnetic stimulation was delivered to the motor cortex 2 sec. after the start cue. EMG signals were recorded from the extensor carpi radialis muscle. Trials with background EMG activity were discarded based on visual inspection. Both motor-evoked potential (MEP) and background EMG amplitudes increased during motor imagery. The amount of increase in MEP amplitude was positively correlated with the amount of increase in background EMG amplitude during motor imagery. The statistically significant increase in MEP amplitude during motor imagery disappeared when the effect of muscle activity was statistically eliminated or after trials with background EMG activity were discarded based on strict quantitative criteria. Facilitation of corticospinal excitability during motor imagery of wrist movement depends partially on muscle activity. Discarding background EMG activity during motor imagery based on visual inspection is not sufficient to equalize background EMG amplitude between resting and motor imagery. Discarding trials with background EMG activity through strict quantitative criteria is useful to equalize background EMG amplitude between at rest and during motor imagery.  相似文献   

15.
A detailed kinematic and electromyographic (EMG) analysis of single degree of freedom timing responses is reported to (a) determine the coherence of kinematic and EMG variability to the reduced timing error variability exhibited with amplitude increments within a given criterion movement time and (b) understand the temporal organization of various movement parameters in simple responses. The data reveal that the variability of kinematic (time to peak acceleration, duration of acceleration phase, time to peak deceleration) and EMG (duration of agonist burst, duration of antagonist burst, time to antagonist burst) timing parameters decreased with increments of average velocity in a manner consistent with the variable timing error. In addition, the coefficient of variation for peak acceleration, peak deceleration, and integrated EMG of the agonist burst followed the same trend. Increasing average movement velocity also led to decreases in premotor and motor reaction times. Overall, the findings suggest a strong coherence between the variability of response outcome, kinematic, and EMG parameters.  相似文献   

16.
A detailed kinematic and electromyographic (EMG) analysis of single degree of freedom timing responses is reported to (a) determine the coherence of kinematic and EMG variability to the reduced timing error variability exhibited with amplitude increments within a given criterion movement time and (b) understand the temporal organization of various movement parameters in simple responses. The data reveal that the variability of kinematic (time to peak acceleration, duration of acceleration phase, time to peak deceleration) and EMG (duration of agonist burst, duration of antagonist burst, time to antagonist burst) timing parameters decreased with increments of average velocity in a manner consistent with the variable timing error. In addition, the coefficient of variation for peak acceleration, peak deceleration, and integrated EMG of the agonist burst followed the same trend. Increasing average movement velocity also led to decreases in premotor and motor reaction times. Overall, the findings suggest a strong coherence between the variability of response outcome, kinematic, and EMG parameters.  相似文献   

17.
Monocular stereopsis with and without head movement   总被引:2,自引:0,他引:2  
Random dots moving with various velocity gradients were presented to observers; the motion was yoked to head movement in one condition and to no head movement in another. In Experiment 1, 12 observers were shown motion gradients with sine, triangle, sawtooth, and square waveforms with amplitudes (equivalent disparities) of 12' and 1 degrees 53'. In Experiment 2, 48 observers were shown only the sinewave or square-wave gradient of 1 degrees 53' disparity either with or without head movement so that the observers' expectation to see depth in one condition did not transfer to another. The main findings were: (1) with 12' disparity, the head-movement condition produced perceived depth but almost no perceived motion, whereas the no-head-movement condition produced both perceived depth and perceived motion; (2) with 1 degrees 53' disparity, both conditions produced perceived depth and perceived motion; and (3) when the expectation to see depth was removed, the no-head-movement condition with the square-wave gradient produced no perceived depth, only motion. We suggest that monocular stereopsis with head movement can be achieved without perception of motion but monocular stereopsis without head movement requires perception of motion.  相似文献   

18.
Random dots moving with various velocity gradients were presented to observers; the motion was yoked to head movement in one condition and to no head movement in another. In Experiment 1, 12 observers were shown motion gradients with sine, triangle, sawtooth, and square waveforms with amplitudes (equivalent disparities) of 12′ and 1° 53′. In Experiment 2, 48 observers were shown only the sinewave or square-wave gradient of 1° 53′ disparity either with or without head movement so that the observers’ expectation to see depth in one condition did not transfer to another. The main findings were: (1) with 12′ disparity, the head-movement condition produced perceived depth but almost no perceived motion, whereas the no-head-movement condition produced both perceived depth and perceived motion; (2) with 1° 53′ disparity, both conditions produced perceived depth and perceived motion; and (3) when the expectation to see depth was removed, the no-head-movement condition with the square-wave gradient produced no perceived depth, only motion. We suggest that monocular stereopsis with head movement can be achieved without perception of motion but monocular stereopsis without head movement requires perception of motion.  相似文献   

19.
On the basis of a study by D. J. Povinelli, D. T. Bierschwale, and C. G. Cech (1999), the performance of family dogs (Canis familiaris) was examined in a 2-way food choice task in which 4 types of directional cues were given by the experimenter: pointing and gazing, head-nodding ("at target"), head turning above the correct container ("above target"), and glancing only ("eyes only"). The results showed that the performance of the dogs resembled more closely that of the children in D. J. Povinelli et al.'s study, in contrast to the chimpanzees' performance in the same study. It seems that dogs, like children, interpret the test situation as being a form of communication. The hypothesis is that this similarity is attributable to the social experience and acquired social routines in dogs because they spend more time in close contact with humans than apes do, and as a result dogs are probably more experienced in the recognition of human gestures.  相似文献   

20.
Analysis of elbow-extension movements, executed at maximal velocity, show positive correlations of timing of agonist-antagonist EMG activity with both movement velocity and displacement. Results indirectly support the notion that the antagonist musculature provides a braking force to arrest rapid limb movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号