首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
扩散张量成像是目前唯一可以在活体显示大脑内白质纤维走向的磁共振成像技术,对于脑胶质瘤术前诊断,制定手术计划,指导手术及判定预后等方面是非常有帮助的。综述了近年来扩散张量成像技术在脑胶质瘤诊断、治疗及判定预后中的应用价值,并结合文献提出了目前存在的不足。  相似文献   

2.
In this study, the development of white matter was studied using an optimized diffusion tensor imaging (DTI) protocol in 20 normal subjects (10–40 years old). The normal development of white matter tracts was addressed by comparing the diffusion anisotropy results between two sub‐groups: eight adults (26–38 years old) and eight adolescents (13–15 years old). The difference in myelination extent between these two groups as indexed by the fractional anisotropy was identified by conducting a student t‐test of the measured diffusion anisotropy maps. Significant differences (p < 0.01) were detected in the gyrus frontalis medialis (GFM), gyrus temporalis medialis (GTM) and gyrus cinguli (GC), in addition to the developmental changes in corpus callosum. A brief overview of previous published DTI studies in developmental science and current progress in DTI techniques is also given at the end of this paper. It may be useful for readers interested in using DTI to study developmental problems but who are not familiar with the various technical aspects.  相似文献   

3.
As Norman Geschwind asserted in 1965, syndromes resulting from white matter lesions could produce deficits in higher-order functions and “disconnexion” or the interruption of connection between gray matter regions could be as disruptive as trauma to those regions per se. The advent of in vivo diffusion tensor imaging, which allows quantitative characterization of white matter fiber integrity in health and disease, has served to strengthen Geschwind’s proposal. Here we present an overview of the principles of diffusion tensor imaging (DTI) and its contribution to progress in our current understanding of normal and pathological brain function.  相似文献   

4.
大脑的性别差异近年来受到了广泛关注。脑成像技术的出现为脑结构和脑功能性别差异的研究开辟了新的道路。借助结构磁共振成像和弥散张量成像等脑结构信息, 以及脑电图、正电子发射断层扫描技术和功能性磁共振成像等脑功能信息, 当前研究主要探讨了脑灰质、脑白质和大脑的基线活动在脑局部区域、脑子系统、全脑连接组三个层次上的性别差异及其在年龄上的发展变化。此外, 为了更好地理解脑性别差异, 当前文章还探讨了脑性别差异研究领域的一些认识误区。有关脑性别差异的研究虽然已经取得了丰富的成果, 但现有的研究结果存在很多分歧, 仍然有深入挖掘的空间。未来应该加强对具有性别特异性的心理疾病脑机制的研究, 关注基因和环境对脑性别差异的交互作用, 并利用脑功能活动动态变化的特性、以及结合多模态的脑成像技术进一步阐明脑性别差异。  相似文献   

5.
Sex differences in the relationship between general intelligence and brain structure are a topic of increasing research interest. Early studies focused mainly on gray and white matter differences using voxel-based morphometry, while more recent studies investigated neural fiber tracts using diffusion tensor imaging (DTI) to analyze the white matter microstructure. In this study we used tract-based spatial statistics (TBSS) on DTI to test how intelligence is associated with brain diffusion indices and to see whether this relationship differs between men and women. 63 Men and women divided into groups of lower and higher intelligence were selected. Whole-brain DTI scans were analyzed using TBSS calculating maps of fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). The results reveal that the white matter microstructure differs between individuals as a function of intelligence and sex. In men, higher intelligence was related to higher FA and lower RD in the corpus callosum. In women, in contrast, intelligence was not related to the white matter microstructure. The higher values of FA and lower values of RD suggest that intelligence is associated with higher myelination and/or a higher number of axons particularly in men. This microstructural difference in the corpus callosum may increase cognitive functioning by reducing inter-hemispheric transfer time and thus account for more efficient brain functioning in men.  相似文献   

6.
弥散张量成像在语言认知神经科学研究中的应用   总被引:1,自引:0,他引:1  
乐秋海  舒华 《心理科学进展》2010,18(9):1369-1376
人类的语言功能不仅仅基于以额叶、颞叶为代表的语言脑区灰质皮层的激活, 更重要的是基于这些脑区之间白质纤维束的连接。随着各种脑成像技术的逐渐成熟, 基于核磁共振的弥散张量成像技术在语言认知领域展现出越来越重要的作用。弥散张量成像在语言认知研究上的应用, 可以将其与行为测查、功能定位成像、功能连接、全脑网络等多种分析方法结合来共同研究语言认知, 进而从脑结构的角度来探究语言与脑的关系。  相似文献   

7.
The integrity of cerebral white matter is critical for efficient cognitive functioning, but little is known regarding the role of white matter integrity in age-related differences in cognition. Diffusion tensor imaging (DTI) measures the directional displacement of molecular water and as a result can characterize the properties of white matter that combine to restrict diffusivity in a spatially coherent manner. This review considers DTI studies of aging and their implications for understanding adult age differences in cognitive performance. Decline in white matter integrity contributes to a disconnection among distributed neural systems, with a consistent effect on perceptual speed and executive functioning. The relation between white matter integrity and cognition varies across brain regions, with some evidence suggesting that age-related effects exhibit an anterior–posterior gradient. With continued improvements in spatial resolution and integration with functional brain imaging, DTI holds considerable promise, both for theories of cognitive aging and for translational application.  相似文献   

8.
The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes contribute to improved reasoning ability over development. In particular, we sought to understand whether previously reported relationships between white matter microstructure and reasoning are mediated by processing speed. To this end, we analyzed diffusion tensor imaging data as well as data from standard psychometric tests of cognitive abilities from 103 individuals between the ages of 6 and 18. We used structural equation modeling to investigate the network of relationships between brain and behavior variables. Our analyses provide support for the hypothesis that white matter maturation (as indexed either by microstructural organization or volume) supports improved processing speed, which, in turn, supports improved reasoning ability.  相似文献   

9.
Magnetic resonance imaging (MRI) techniques, such as magnetic resonance microscopy (MRM), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS), have recently been applied to the study of both normal and abnormal structure and neurochemistry in small animals. Herein, findings from studies in which these methods have been used for the examination of animal models of Fetal Alcohol Spectrum Disorder (FASD) are discussed. Emphasis is placed on results of imaging studies in fetal and postnatal mice that have highlighted the developmental stage dependency of prenatal ethanol exposure-induced CNS defects. Consideration is also given to the promise of methodological advances to allow in vivo studies of aberrant brain and behavior relationships in model animals and to the translational nature of this work.  相似文献   

10.
This study investigated the relation between cerebral damage related to multiple sclerosis (MS) and cognitive decline as determined by two classical mental tracking tests. Cerebral damage in 15 relapsing–remitting MS patients was measured by diffusion tensor imaging (DTI). Fractional anisotropy, longitudinal and transverse diffusivity were defined in the cerebral parenchyma. Cognitive performance of the MS patients was assessed with the oral response format of the Symbol Digit Modalities Test (SDMT) and the Paced Auditory Serial Addition Test (PASAT). A significant correlation was found between performance on the SDMT and the fractional anisotropy in the brain. This correlation was predominantly induced by transverse diffusivity. Transverse diffusivity refers to the diffusion across fibers rather than along the fibers and is believed to be a specific marker for axonal loss and demyelination associated with MS. No significant association between DTI-measures and PASAT performance was found and this negative finding was mainly attributed to psychometric qualities. These results indicate that diffusivity along the non-principal diffusion direction, a possible signature of MS-related white matter pathology, contributes to information processing speed as measured with the SDMT, a task that requires close visual tracking and a widely used clinical marker for cognitive decline in MS.  相似文献   

11.
Background: Diffusion tensor imaging (DTI) has revealed microstructural aspects of adolescent brain development, the cognitive correlates of which remain relatively uncharacterized. Methods: DTI was used to assess white matter microstructure in 18 typically developing adolescents (ages 16–18). Fractional anisotropy (FA) and mean diffusion (MD) were evaluated within the splenium and body of the corpus callosum in relation to cognitive performance. Results: Visuospatial construction abilities were associated with white matter integrity in both the splenium and body of the corpus callosum, while only splenium integrity was associated with language and psychomotor function. Conclusion: Results suggest that, for typically developing adolescents, white matter coherence positively relates to visuospatial, psychomotor, and language skills. These findings may have implications for the cognitive functioning of clinical populations in which typical white matter development is altered.  相似文献   

12.
A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9-13-year-old children with diffusion tensor imaging and resting-state functional magnetic resonance imaging. We identified resting-state networks using Independent Component Analysis and tested whether the functional connectivity between the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) depends upon the maturation of the underlying cingulum white matter tract. To determine the generalizability of this relationship, we also tested whether functional connectivity depends on white matter maturity between bilateral lateral prefrontal cortex (lateral PFC) within the executive control network. We found a positive relationship between mPFC-PCC connectivity and fractional anisotropy of the cingulum bundle; this positive relationship was moderated by the age of the subjects such that it was stronger in older children. By contrast, no such structure-function relationship emerged between right and left lateral PFC. However, functional and structural connectivity of this tract related positively with cognitive speed, fluency, and set-switching neuropsychological measures.  相似文献   

13.
Functional neurological changes after surgery combined with diffusion tensor imaging (DTI) tractography can directly provide evidence of anatomical localization of brain function. Using these techniques, a patient with dysgraphia before surgery was analyzed at our hospital in 2011. The patient showed omission of kana within sentences before surgery, which improved after surgery. The brain tumor was relatively small and was located within the primary sensory area (S1) of the inferior parietal lobe (IPL). DTI tractography before surgery revealed compression of the branch of the superior longitudinal fasciculus (SLF) by the brain tumor. These results suggest that the left SLF within the S1 of IPL plays a role in the development of dysgraphia of kana omission within sentences.  相似文献   

14.
目前关于运动员经验优势的脑机制还存在争议, 尤其对于涉及较多认知过程参与的高策略性技能项目运动员, 其大脑白质结构可塑性变化还需进一步探究。研究横向对比了乒乓球运动员和非运动员大脑白质纤维束的弥散张量成像数据。结果发现, 相比于非运动员, 乒乓球运动员在连接背侧和腹侧通路脑区的双侧皮质脊髓束、左侧上纵束、左侧下纵束和双侧额枕下束的各向异性值(FA)更大, 进一步分析发现, 部分腹侧通路白质纤维束FA增加的原因是径向扩散系数(RD)下降。研究结果支持了动作双通路模型。提示经过长期高策略性技能训练, 乒乓球运动员在背侧和腹侧通路上的白质纤维束结构完整性增强。  相似文献   

15.
Cognitive and motor development in children remain fascinating processes that are uniquely human. Progress has been made in recent years in elucidating the prenatal process of human brain development. In addition, much information exists regarding the behavioral aspects of postnatal human development. However, little is known about the relationship between anatomic postnatal central nervous system development and the accretion of functional milestones observed in children from the neonatal period through adolescence. Recently, powerful qualitative and quantitative magnetic resonance techniques have been developed that will permit detailed inquiry into the connection between the developing brain and the developing mind. In this review, first, the steps of prenatal and postnatal brain development are reviewed briefly. Subsequently, recent magnetic resonance imaging data related to human brain development during the fetal, neonatal, and later childhood periods are presented. Finally, functional magnetic resonance imaging (fMRI) is discussed. Specific examples of its usefulness are provided. Magnetic resonance imaging techniques such as quantitative MRI, volumetric MRI, diffusion tensor imaging, and functional magnetic resonance imaging (fMRI) when combined with neurologic and neuropsychologic evaluation, will provide new insights into the cognitive development of children. MRDD Research Reviews 6:68-80, 2000.  相似文献   

16.
Lyoo IK  Hwang J  Sim M  Dunn BJ  Renshaw PF 《CNS spectrums》2006,11(4):269-280
This article reviews the current state of magnetic resonance imaging techniques as applied to bipolar disorder. Addressed are conventional methods of structural neuroimaging and recently developed techniques. This latter group comprises volumetric analysis, voxel-based morphometry, the assessment of T2 white matter hyperintensities, shape analysis, cortical surface-based analysis, and diffusion tensor imaging. Structural analysis methods used in magnetic resonance imaging develop exponentially, and now present opportunities to identify disease-specific neuroanatomic alterations. Greater acuity and complementarity in measuring these alterations has led to the generation of further hypotheses regarding the pathophysiology of bipolar disorder. Included in the summary of findings is consideration of a resulting neuroanatomic model. Integrative issues and future directions in this relatively young field, including multi-modal approaches enabling us to produce more comprehensive results, are discussed.  相似文献   

17.
The preschool years represent a time of expansive mental growth, with the initial expression of many psychological abilities that will continue to be refined into young adulthood. Likewise, brain development during this age is characterized by its ??blossoming?? nature, showing some of its most dynamic and elaborative anatomical and physiological changes. In this article, we review human brain development during the preschool years, sampling scientific evidence from a variety of sources. First, we cover neurobiological foundations of early postnatal development, explaining some of the primary mechanisms seen at a larger scale within neuroimaging studies. Next, we review evidence from both structural and functional imaging studies, which now accounts for a large portion of our current understanding of typical brain development. Within anatomical imaging, we focus on studies of developing brain morphology and tissue properties, including diffusivity of white matter fiber tracts. We also present new data on changes during the preschool years in cortical area, thickness, and volume. Physiological brain development is then reviewed, touching on influential results from several different functional imaging and recording modalities in the preschool and early school-age years, including positron emission tomography (PET), electroencephalography (EEG) and event-related potentials (ERP), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS). Here, more space is devoted to explaining some of the key methodological factors that are required for interpretation. We end with a section on multimodal and multidimensional imaging approaches, which we believe will be critical for increasing our understanding of brain development and its relationship to cognitive and behavioral growth in the preschool years and beyond.  相似文献   

18.
Over the past 5 years, Diffusion Tensor Imaging (DTI) has begun to provide new evidence about the effects of prenatal alcohol exposure on white matter development. DTI, which examines microstructural tissue integrity, is sensitive to more subtle white matter abnormalities than traditional volumetric MRI methods. Thus far, the available DTI data suggest that white matter microstructural abnormalities fall on a continuum of severity in Fetal Alcohol Spectrum Disorder (FASD). Abnormalities are prominent in the corpus callosum, but also evident in major anterior-posterior fiber bundles, corticospinal tracts, and cerebellum. These subtle abnormalities are correlated with neurocognitive deficits, especially in processing speed, non-verbal ability, and executive functioning. Future studies using larger samples, increasingly sophisticated DTI methods, and additional functional MRI connectivity measures will better characterize the full range of abnormalities in FASD. Ultimately, these measures may serve as indices of change in future longitudinal studies and in studies of interventions for FASD.  相似文献   

19.
In everyday conversation, we make many rapid choices between competing concepts and words in order to convey our intent. This process is termed semantic control, and it is thought to rely on information transmission between a distributed semantic store in the temporal lobes and a more discrete region, optimized for retrieval and selection, in the left inferior frontal gyrus. Here, we used diffusion tensor imaging in a group of neurologically normal young adults to investigate the relationship between semantic control and white matter tracts that have been implicated in semantic memory retrieval. Participants completed a verb generation task that taps semantic control (Snyder & Munakata, 2008; Snyder et al., 2010) and underwent a diffusion imaging scan. Deterministic tractography was performed to compute indices representing the microstructural properties of the inferior fronto-occipital fasciculus (IFOF), the uncinate fasciculus (UF), and the inferior longitudinal fasciculus (ILF). Microstructural measures of the UF failed to predict semantic control performance. However, there was a significant relationship between microstructure of the left IFOF and ILF and individual differences in semantic control. Our findings support the view put forth by Duffau (2013) that the IFOF is a key structural pathway in semantic retrieval.  相似文献   

20.
Studying the biological mechanisms underlying mental retardation and developmental disabilities (MR/DD) is a very complex task. This is due to the wide heterogeneity of etiologies and pathways that lead to MR/DD. Breakthroughs in genetics and molecular biology and the development of sophisticated brain imaging techniques during the last decades have facilitated the emergence of a field called Behavioral Neurogenetics. Behavioral Neurogenetics focuses on studying genetic diseases with known etiologies that are manifested by unique cognitive and behavioral phenotypes. In this review, we describe the principles of magnetic resonance imaging (MRI) techniques, including structural MRI, functional MRI, and diffusion tensor imaging (DTI), and how they are implemented in the study of Williams (WS), velocardiofacial (VCFS), and fragile X (FXS) syndromes. From WS we learn that dorsal stream abnormalities can be associated with visuospatial deficits; VCFS is a model for exploring the molecular and brain pathways that lead to psychiatric disorders for which subjects with MR/DD are at increased risk; and finally, findings from multimodal imaging techniques show that aberrant frontal-striatal connections are implicated in the executive function and attentional deficits of subjects with FXS. By deciphering the molecular pathways and brain structure and function associated with cognitive deficits, we will gain a better understanding of the pathophysiology of MR/DD, which will eventually make possible more specific treatments for this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号