首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用心理不应期研究范式, 两个反应时实验检测了注意力资源分配的特征以及双任务的相互干扰机制。每次实验中, 要求被试快速、相继对高低音辨别任务(T1)和Stroop任务(T2)作出选择性反应, T1和T2间采用6种不同的时间间隔(SOA), 以系统考察不同SOA条件下两个任务的反应时走势。结果发现:(1) 在重叠的双任务情境中, T1的中枢加工导致在T2上出现显著的PRP效应, T2的中枢反应选择对T1的反应选择和反应执行加工同样产生显著的影响。SOA以及T2的难度与复杂度实质性地影响了T1的反应选择和反应执行加工。(2) 当两个任务同时需要进行中枢反应选择加工时, 一个任务占用更多的注意资源将导致另一任务获得较少的注意资源, 注意资源量的多寡直接决定了该任务的加工效率。(3) 两个任务的加工相互影响、相互制约, 这种制约机制不仅仅存在于中枢反应选择阶段, 在反应执行阶段仍然存在。  相似文献   

2.
吴彦文  游旭群 《心理学报》2007,39(5):785-794
采用心理不应期研究范式,三个反应时实验检测了心理旋转任务和其他认知操作任务能否并行加工的问题。在每个实验中要求被试快速、系列地完成对高低音的辨别任务(T1)和不同旋转角度的正反像辨别任务(T2),T1和T2呈现的时间间隔运用变化的SOA。结果发现:(1)T1的反应选择对T2的反应选择产生了很大的影响,在T2上PRP效应显著。心理旋转的操作成绩随着SOA的缩短而降低。(2)在T1上同样存在随着SOA缩短,反应时增加,正确率下降的趋势。T2的反应选择对T1的反应选择同样产生了显著的影响。(3)T2的反应选择对T1的中枢加工产生了相应的影响,表明当T1的反应选择占据中枢瓶颈时,心理旋转任务和其他认知操作任务在中枢瓶颈中并行得到了有效的加工  相似文献   

3.
There is often strong interference if a second target stimulus (T2) is presented before processing of a prior target stimulus (T1) is complete. In the "Psychological Refractory Period" (PRP) paradigm, responses are speeded and interference manifests as increased response time for T2. In the "Attentional Blink" (AB) paradigm, stimuli are masked and responses unspeeded; interference manifests as reduced T2 accuracy. While different causes have usually been considered for PRP and AB phenomena, recent evidence has supported a unified account based on a single, shared restriction on concurrent processing. Here we show that a full assessment of separate and shared resource limitations requires direct comparison of hybrid PRP/AB trials with corresponding pure PRP and AB cases. Randomizing trial types in such a comparison also brings substantial benefit in addressing possible changes in task preparation or readiness. The data from two such experiments--combining speeded auditory (SA) and unspeeded visual (UV) task events--provide clear evidence for both separate and shared resource limitations. Often interference is strongest for T1 and T2 events of the same type, reflecting predominantly different limitations in SA and UV processing. With modest increases in demand, however, interference between different event types can also be made arbitrarily large, reflecting arbitrarily important shared limitations. For even such simple tasks as these, T--T2 interference reflects a combination of relatively local and relatively global sources.  相似文献   

4.
A growing body of research suggests that dual-task interference in sensory consolidation (e.g., the attentional blink, AB) and response selection (e.g., the psychological refractory period, PRP) stems from a common central bottleneck of information processing. With regard to response selection, it is well known that training reduces dual-task interference. We tested whether training that is known to be effective for response selection can also reduce dual-task interference in sensory consolidation. Over two experiments, performance on a PRP paradigm (Exp. 1) and on AB paradigms (differing in their stimuli and task demands, Exps. 1 and 2) was examined after participants had completed a relevant training regimen (T1 practice for both paradigms), an irrelevant training regimen (comparable sensorimotor training, not related to T1 for both tasks), a visual-search training regimen (Exp. 2 only), or after participants had been allocated to a no-training control group. Training that had shown to be effective for reducing dual-task interference in response selection was also found to be effective for reducing interference in sensory consolidation. In addition, we found some evidence that training benefits transferred to the sensory consolidation of untrained stimuli. Collectively, these findings show that training benefits can transfer across cognitive operations that draw on the central bottleneck in information processing. These findings have implications for theories of the AB and for the design of cognitive-training regimens that aim to produce transferable training benefits.  相似文献   

5.
The standard bottleneck model of the psychological refractory period (PRP) assumes that the selection of the second response is postponed until the first response has been selected. Accordingly, dual-task interference is attributed to a single central-processing bottleneck involving decision and response selection, but not the execution of the response itself. In order to critically examine the assumption that response execution is not part of this bottleneck, we systematically manipulated the temporal demand for executing the first response in a classical PRP paradigm. Contrary to the assumption of the standard bottleneck model, this manipulation affected the reaction time for Task 2. Specifically, reaction time for Task 2 increased with execution time for Task 1. This carryover effect from Task 1 to Task 2 provides evidence for the notion that response execution can be part of the processing bottleneck.  相似文献   

6.
Can practice eliminate the psychological refractory period effect?   总被引:6,自引:0,他引:6  
Can people learn to perform two tasks at the same time without interference? To answer this question, the authors trained 6 participants for 36 sessions in a Psychological Refractory Period (PRP) experiment, where Task 1 required a speeded vocal response to an auditory stimulus and Task 2 required a speeded manual response to a visual stimulus. The large PRP effect found initially (353 ms in Session 1) shrank to only about 40 ms over the course of practice, disappearing entirely for 1 of the 6 participants. This reduction in the PRP effect with practice is considerably larger than has been previously reported. The obtained pattern of factor interactions between stimulus onset asynchrony and each of three task difficulty manipulations (Task 1 judgment difficulty, Task 2 stimulus contrast, and Task 2 mapping compatibility) supports a postponement (bottleneck) account of dual-task interference, both before and after practice.  相似文献   

7.
The present study determined whether central information processing is subject to a circadian rhythm and, therefore, contributes to the well-known time-of-day effect on reaction time (RT). To assess the duration of central processing chronometrically, we employed the psychological refractory period (PRP) paradigm. In this task, subjects make fast responses to two successive stimuli. RT to the second stimulus is usually prolonged as the interval between the two stimuli decreases. This PRP effect is commonly attributed to a central-processing bottleneck. Subjects performed the PRP task every 2 hr during 28 hr of constant wakefulness under controlled conditions. The PRP effect was most pronounced in the early morning. We conclude that central processing is subject to a circadian rhythm, exhibiting a slowing during the night and a nadir in the early morning.  相似文献   

8.
To investigate the locus of signal probability effects and the influence of stimulus quality on this locus, the authors manipulated probability in Task 2 of a psychological refractory period (PRP) paradigm. The effect was additive with stimulus onset asynchrony (SOA) when the target was not masked but underadditive with decreasing SOA when the target was masked. Even with masking, however, a range of probabilities had effects additive with SOA. The results suggest loci of stimulus probability before the PRP bottleneck as well as at or after the bottleneck. A second issue addressed was the locus of interference in the attentional blink (AB). The AB was larger when the probability of the first of 2 targets was lower. The results lead to the conclusion that one cause of the AB effect is a locus at least as late as the PRP bottleneck.  相似文献   

9.
Why practice reduces dual-task interference   总被引:5,自引:0,他引:5  
M. A. Van Selst, E. Ruthruff, and J. C. Johnston (1999) found that practice dramatically reduced dual-task interference in a Psychological Refractory Period (PRP) paradigm with 1 vocal response and 1 manual response. Results from 3 further experiments using the highly trained participants of M. A. Van Selst et al. (1999) support 4 main conclusions: (a) A processing bottleneck exists even after extensive practice; (b) the principal cause of the reduction in PRP interference with practice is shortening of Task 1 bottleneck stages; (c) a secondary cause is that 1 or more, but not all, of the Task 2 substages that are postponed before practice are not postponed after practice (i.e., become automatized); and (d) the extent of PRP reduction with practice depends on the modalities of the 2 responses. A control experiment with 2 manual response tasks showed less PRP reduction with practice than that found by Van Selst et al.  相似文献   

10.
The purpose of this paper was to provide insight into the nature of response selection by reviewing the literature on stimulus-response compatibility (SRC) effects and the psychological refractory period (PRP) effect individually and jointly. The empirical findings and theoretical explanations of SRC effects that have been studied within a single-task context suggest that there are two response-selection routes—automatic activation and intentional translation. In contrast, all major PRP models reviewed in this paper have treated response selection as a single processing stage. In particular, the response-selection bottleneck (RSB) model assumes that the processing of Task 1 and Task 2 comprises two separate streams and that the PRP effect is due to a bottleneck located at response selection. Yet, considerable evidence from studies of SRC in the PRP paradigm shows that the processing of the two tasks is more interactive than is suggested by the RSB model and by most other models of the PRP effect. The major implication drawn from the studies of SRC effects in the PRP context is that response activation is a distinct process from final response selection. Response activation is based on both long-term and short-term task-defined S-R associations and occurs automatically and in parallel for the two tasks. The final response selection is an intentional act required even for highly compatible and practiced tasks and is restricted to processing one task at a time. Investigations of SRC effects and responseselection variables in dual-task contexts should be conducted more systematically because they provide significant insight into the nature of response-selection mechanisms.  相似文献   

11.
Three psychological refractory period (PRP) experiments were conducted to assess the effect of central arrival times at the bottleneck on task order scheduling. In Experiment 1, a visual first task (plus-minus symbol discrimination) was combined with an auditory second task (left-right tone judgement) in a standard PRP paradigm with constant task order. In Experiment 2, the order of the tasks varied unpredictably. In Experiment 3, visual-auditory dual-task trials were randomly mixed with single-task trials. To dissociate central arrival times from stimulus detection times, the perceptual stage of the visual task was extended using stimulus degradation. Most importantly, no evidence for a first-come, first-served principle at the central bottleneck was found with the employed paradigms. Instead, the results indicated that preparation (Experiment 1) and the detection times of the stimuli (Experiments 2 and 3) were the main determinants of central processing order in the present study. In the light of previous research, the results indicate that central processing order can be influenced by various factors. The interplay between these factors seems to depend highly on the conditions and requirements of the employed experimental paradigm.  相似文献   

12.
Spatial attention can be biased to locations near the hand. Some studies have found facilitated processing of targets appearing within hand-grasping space. In this study, we investigated how changing top-down task priorities alters hand bias during visual processing. In Experiment 1, we used a covert orienting paradigm with nonpredictive cues and emphasized the location of the hand relative to the target. Hands or visual anchors (boards) were placed next to potential target locations, and responses were made with the contralateral hand. Results indicated a hand-specific processing bias: Hand location, but not board location, speeded responses to targets near the hand. This pattern of results replicated previous studies using covert orienting paradigms with highly predictive cues. In Experiment 2, we used the same basic paradigm but emphasized the location of the response hand. Results now showed speeded responses to targets near response locations. Together these experiments demonstrated that top-down instructional sets (i.e., what is considered to be most relevant to task performance) can change the processing priority of hand location by influencing the strength of top-down, as compared with bottom-up, inputs competing for attention resources.  相似文献   

13.
The mechanism underlying the reaction time (RT2) slowing to the 2nd of 2 successively presented stimuli (S1 and S2) in the psychological refractory period paradigm was investigated. Stimulus onset synchrony (SOA) between S1 and S2, contrast of S2, and Task 2 set-level compatibility was manipulated. Specifically, the authors used a psychophysiological approach to examine RT2 slowing in trials in which the reaction time to S1 (RT1) was shorter than the SOA. For trials with RT1 < SOA, the clear decrease in RT2 with increasing SOA was underadditive with the S2 contrast effect, but additive with compatibility. Electrophysiological measures revealed an exclusively premotoric locus of RT2 slowing. These findings indicate that a central bottleneck stage is occupied for some period after response to S1 execution, consistent with an extended response selection bottleneck account.  相似文献   

14.
In a rapid serial visual presentation stream processing of a first target (T1) impairs detection or identification of a second target (T2) that appears within 500 ms after T1. This effect characterizes the so-called attentional blink (AB). To evaluate contemporary information-processing accounts of the AB phenomenon in terms of the underlying processing mechanisms the present study examined the potential influence of Task 1 difficulty on the AB effect. To this end, T1 contrast and T1 response requirements were systematically varied across four experiments. Experiment 1 ruled out a mere sensory basis of the contrast manipulation on T2 performance. When only T2 had to be reported (Experiment 2) an AB effect occurred that was slightly modulated by T1 contrast. When report of both T1 and T2 was required in a standard AB task (Experiment 3), the magnitude of the AB depended to a larger extent on stimulus contrast, and it increased further when speeded T1 choice responses were additionally required (Experiment 4). On the basis of the present impact of Task 1 difficulty on the AB effect we conclude that processing limitations cause the AB phenomenon. We discuss such limitations in terms of perceptual (T1 consolidation) and central (response selection) bottleneck processes.  相似文献   

15.
To explore the mechanisms underlying the ability to intentionally forget, the present study combined an itemmethod directed forgetting paradigm with tasks that measure stop-signal inhibition (Experiments 1 and 2) and inhibition of return (IOR; Experiment 2). Following each study-phase instruction to remember (R) or forget (F), a target was presented centrally (Experiment 1) or to the left or right in the visual periphery (Experiment 2); the target required a speeded response that was sometimes countermanded by a central stop signal. Although stopsignal reaction times were unaffected by the preceding memory instruction (or relationship with word-target location), F instructions improved stopping and delayed responses. Replicating previous findings in the literature, significant IOR was observed following F instructions but not following R instructions (Experiment 2). These findings suggest that intentional forgetting is an active cognitive process that more likely engages attentional mechanisms related to orienting than those related to stop-signal inhibition.  相似文献   

16.
Four dual-task experiments required a speeded manual choice response to a tone in a close temporal proximity to a saccadic eye movement task. In Experiment 1, subjects made a saccade towards a single transient; in Experiment 2, a red and a green colour patch were presented to left and right, and the saccade was to which ever patch was the pre-specified target colour. There was some slowing of the eye movement, but neither task combination showed typical dual-task interference (the “psychological refractory effect”). However, more interference was observed when the direction of the saccade depended on whether a central colour patch was red or green, or when the saccade was directed towards the numerically higher of two large digits presented to the left and the right. Experiment 5 examined a vocal second task, for comparison. The findings might reflect the fact that eye movements can be directed by two separate brain systems--the superior colliculus and the frontal eye fields; commands from the latter but not the former may be delayed by simultaneous unrelated sensorimotor tasks.  相似文献   

17.
When two stimuli are to be processed in rapid succession, reaction time (RT) to the second stimulus is delayed. The slowing of RT has been attributed to a single processing bottleneck at response selection (RS) or to a central bottleneck following the initiation of the first response. The hypothesis of a response initiation bottleneck is mainly based on reports of underadditive interactions between stimulus onset asynchrony (SOA) and the number of stimulus—response alternatives (simple vs. two-choice response). The present study tested the hypothesis of a response initiation bottleneck by recording the lateralized readiness potential (LRP), a brain wave, emerging during or immediately following RS. The LRP findings were consistent with a central bottleneck but did not support the late bottleneck hypothesis. Instead, the LRP provided direct evidence that the underadditive interaction of number of alternatives and SOA is due to an increase of response anticipations in the simple response condition.  相似文献   

18.
According to bottleneck models of the attentional blink (AB), first-target (T1) processing difficulty should be related to AB magnitude. Tests of this prediction that have varied T1 difficulty in the context of a standard AB paradigm, however, have yielded mixed results. The present work examines two factors that may mediate the relationship between T1 difficulty and the AB: observer expectancy and backward masking of T1. In two experiments, omission of the backward mask consistently yielded the predicted relationship between T1 difficulty and the AB. In contrast, observer expectancy influenced target identification accuracy but did not mediate the relationship between T1 difficulty and the AB.  相似文献   

19.
When two sequential targets (T1 and T2) are presented within about 600 msec, perception of the second target is impaired. This attentional blink (AB) has been studied by means of two paradigms: rapid serial visual presentation (RSVP), in which targets are embedded in a stream of central distractors, and the two-target paradigm, in which targets are presented eccentrically without distractors. We examined the role of distractors in the AB, using a modified two-target paradigm with a central stream of task-irrelevant distractors. In six experiments, the RSVP stream of distractors substantially impaired identification of both T1 and T2, but only when the distractors shared common characteristics with the targets. Without such commonalities, the distractors had no effect on performance. This points to the subjects' attentional control setting as an important factor in the AB deficit and suggests a conceptual link between the AB and a form of nonspatial contingent capture attributable to distractor processing.  相似文献   

20.
According to bottleneck models of the attentional blink (AB), first-target (T1) processing difficulty should be related to AB magnitude. Tests of this prediction that have varied T1 difficulty in the context of a standard AB paradigm, however, have yielded mixed results. The present work examines two factors that may mediate the relationship between T1 difficulty and the AB: observer expectancy and backward masking of T1. In two experiments, omission of the backward mask consistently yielded the predicted relationship between T1 difficulty and the AB. In contrast, observer expectancy influenced target identification accuracy but did not mediate the relationship between T1 difficulty and the AB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号