首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S. Wiens and A. Ohman (2002) disputed the conclusion that Pavlovian conditioning is strongly related to contingency awareness (P. F. Lovibond & D. R. Shanks, 2002) on the basis that an inappropriate definition of awareness was used. J. R. Manns, R. E. Clark, and L. R. Squire (2002) contended that delay eyeblink conditioning is independent of awareness. The authors of the present article consider these arguments, highlight several problems in the new studies described by the commentators, and conclude that there is still little evidence for unconscious conditioning in either subliminal autonomic conditioning or eyeblink conditioning. The most parsimonious account of existing data is that a single learning process gives rise to both awareness and conditioned responding. Further progress in evaluating the possibility of unconscious conditioning would be facilitated by the development of more completely specified and testable dual-process models.  相似文献   

2.
Squire and colleagues have proposed that trace and delay eyeblink conditioning are fundamentally different kinds of learning: trace conditioning requires acquisition of a conscious declarative memory for the stimulus contingencies whereas delay conditioning does not. Declarative memory in trace conditioning is thought to generate conditioned responding through the activation of a conscious expectancy for when the unconditioned stimulus (US) is going to occur. Perruchet (1985) has previously shown that in a 50% partial reinforcement design it is possible to dissociate single cue delay eyeblink conditioning from conscious expectancy for the US by examining performance over runs of reinforced and nonreinforced trials. Clark, Manns, and Squire (2001) claim that this dissociation does not occur in trace eyeblink conditioning. In the present experiment we examined the Perruchet effect for short, moderate, and long trace intervals (600, 1000, and 1400 ms) and for the equivalent interstimulus intervals (ISIs) in a delay conditioning procedure. We found evidence for a dissociation of eyeblink CRs and US expectancy over runs regardless of whether there was a delay or a trace arrangement of cues. The reasons for the Perruchet effect are still unclear, but the present data suggest that it does not depend on a separate nondeclarative system of the type proposed by Squire and colleagues.  相似文献   

3.
The effects of bilateral hippocampal aspiration lesions on later acquisition of eyeblink conditioning were examined in developing Long-Evans rat pups. Lesions on postnatal day (PND) 10 were followed by evaluation of trace eyeblink conditioning (Experiment 1) and delay eyeblink conditioning (Experiment 2) on PND 25. Pairings of a tone conditioned stimulus (CS) and periocular shock unconditioned stimulus (US, 100 ms) were presented in one of three conditioning paradigms: trace (380 ms CS, 500 ms trace interval, 880 ms interstimulus interval [ISI]), standard delay (380 ms CS, 280 ms ISI), or long delay (980 ms CS, 880 ms ISI). The results of two experiments indicated that hippocampal lesions impaired trace eyeblink conditioning more than either type of delay conditioning. In light of our previous work on the ontogeny of trace, delay, and long-delay eyeblink conditioning (Ivkovich, Paczkowski, & Stanton, 2000) showing that trace and long-delay eyeblink conditioning had similar ontogenetic profiles, the current data suggest that during ontogeny hippocampal maturation may be more important for the short-term memory component than for the long-ISI component of trace eyeblink conditioning. The late development of conditioning over long ISIs may depend on a separate process such as protracted development of cerebellar cortex.  相似文献   

4.
Human subjects ranging in age from 18 to 85 years underwent classical conditioning of the eyeblink response to a tone conditioned stimulus (CS) and an air-puff unconditioned stimulus (UCS). There was a decline in percentage of conditioned responses with age. This decline was most noticeable in subjects over age 50. These conditioning deficits were not due to age-related changes in sensitivity to the tone CS or the air-puff UCS, nor could the conditioning deficits be attributed to an age-related decline in general cognitive abilities or to changes in spontaneous blink rates. The results are discussed in terms of using the classically conditioned eyeblink in humans in conjunction with the classically conditioned nictitating membrane response in rabbits as a model system for studying the neurobiology of age-related conditioning deficits.  相似文献   

5.
The classical conditioning task of blocking involves the adding of a novel but redundant stimulus to a previously trained stimulus. Both blocking and novelty detection are thought to involve the hippocampus. Previously, Solomon (1977) found that nonselective aspiration lesions of the hippocampal region eliminated blocking in rabbit eyeblink conditioning. We tested the effects of selective ibotenic acid lesions of the hippocampus on blocking, as well as on novelty detection, when training is switched from a tone conditioned stimulus (CS) to a compound tone-light CS in eyeblink conditioning. Selective hippocampal lesions did not eliminate blocking but did lead to a facilitation of conditioned response (CR) acquisition to the tone and to the light, but not to the tone-light compound. Selective hippocampal lesions disrupted a CR decrement observed in sham surgical controls when transferred from tone training to tone-light training. It appears that although selective hippocampal lesions do not eliminate blocking in eyeblink conditioning, they do disrupt novelty detection and may facilitate learning to a previously blocked cue.  相似文献   

6.
Auditory and visual conditioned stimulus (CS) pathways for eyeblink conditioning were investigated with reversible inactivation of the medial (MPN) or lateral (LPN) pontine nuclei. In Experiment 1, Long-Evans rats were given three phases of eyeblink conditioning. Phase 1 consisted of three training sessions with electrical stimulation of the medial auditory thalamic nuclei (MATN) paired with a periorbital shock unconditioned stimulus (US). An additional session was given with a muscimol (0.5 μL, 10 mM) or saline infusion targeting the LPN followed by a recovery session with no infusions. The same training and testing sequence was then repeated with either a tone or light CS in phases 2 and 3 (counterbalanced). Experiment 2 consisted of the same training as Experiment 1 except that muscimol or saline was infused in the MPN during the retention tests. Muscimol infusions targeting the LPN severely impaired retention of eyeblink conditioned responses (CRs) to the MATN stimulation and tone CSs but only partially reduced CR percentage to the light CS. Muscimol infusions that targeted the MPN had a larger effect on CR retention to the light CS relative to MATN stimulation or tone CSs. The results provide evidence that the auditory CS pathway necessary for delay eyeblink conditioning includes the MATN-LPN projection and the visual CS pathway includes the MPN.  相似文献   

7.
We examined the importance of awareness for eyeblink conditioning by directly comparing singlecue delay eyeblink conditioning and single-cue trace eyeblink conditioning. During single-cue delay conditioning, participants who became aware of the stimulus contingencies early in the conditioning session conditioned no better than those who became aware later in the session or did not become aware. Thus, the level of awareness was unrelated to the overall level of conditioning across the session. In contrast, awareness of the stimulus contingencies early in the session predicted the success of single-cue trace conditioning. These data, together with earlier findings, show that awareness is irrelevant to single-cue delay eyeblink conditioning but is critical for single-cue trace eyeblink conditioning. The findings from the present study are related to previous findings for differential (CS+ and CS) eyeblink conditioning and awareness.  相似文献   

8.
Young adult Purkinje cell degeneration (pcd) mutant mice, with complete loss of cerebellar cortical Purkinje cells, are impaired in delay eyeblink classical conditioning. In the delay paradigm, the conditioned stimulus (CS) overlaps and coterminates with the unconditioned stimulus (US), and the cerebellar cortex supports normal acquisition. The ability of pcd mutant mice to acquire trace eyeblink conditioning in which the CS and US do not overlap has not been explored. Recent evidence suggests that cerebellar cortex may not be necessary for trace eyeblink classical conditioning. Using a 500 ms trace paradigm for which forebrain structures are essential in mice, we assessed the performance of homozygous male pcd mutant mice and their littermates in acquisition and extinction. In contrast to results with delay conditioning, acquisition of trace conditioning was unimpaired in pcd mutant mice. Extinction to the CS alone did not differ between pcd and littermate control mice, and timing of the conditioned response was not altered by the absence of Purkinje cells during acquisition or extinction. The ability of pcd mutant mice to acquire and extinguish trace eyeblink conditioning at levels comparable to controls suggests that the cerebellar cortex is not a critical component of the neural circuitry underlying trace conditioning. Results indicate that the essential neural circuitry for trace eyeblink conditioning involves connectivity that bypasses cerebellar cortex.  相似文献   

9.
In classical eyeblink conditioning, non-specific emotional responses to the aversive shock unconditioned stimulus (US), which are presumed to coincide with the development of fear, occur early in conditioning and precede the emergence of eyeblink responses. This two-process learning model was examined by concurrently measuring fear and eyeblink conditioning in the freely moving rat. Freezing served as an index of fear in animals and was measured during the inter-trial intervals in the training context and during a tone conditioned stimulus (CS) presented in a novel context. Animals that received CS-US pairings exhibited elevated levels of fear to the context and CS early in training that decreased over sessions, while eyeblink conditioned responses (CRs) developed gradually during acquisition and decreased during extinction. Random CS-US presentations produced a similar pattern of fear responses to the context and CS as paired presentations despite low eyeblink CR percentages, indicating that fear responding was decreased independent of high levels of learned eyeblink responding. The results of paired training were consistent with two-process models of conditioning that postulate that early emotional responding facilitates subsequent motor learning, but measures from random control animals demonstrate that partial CS-US contingencies produce decrements in fear despite low levels of eyeblink CRs. These findings suggest a relationship between CS-US contingency and fear levels during eyeblink conditioning, and may serve to clarify further the role that fear conditioning plays in this simple paradigm.  相似文献   

10.
In classical eyeblink conditioning, non-specific emotional responses to the aversive shock unconditioned stimulus (US), which are presumed to coincide with the development of fear, occur early in conditioning and precede the emergence of eyeblink responses. This twoprocess learning model was examined by concurrently measuring fear and eyeblink conditioning in the freely moving rat. Freezing served as an index of fear in animals and was measured during the inter-trial intervals in the training context and during a tone conditioned stimulus (CS) presented in a novel context. Animals that received CS-US pairings exhibited elevated levels of fear to the context and CS early in training that decreased over sessions, while eyeblink conditioned responses (CRs) developed gradually during acquisition and decreased during extinction. Random CS-US presentations produced a similar pattern of fear responses to the context and CS as paired presentations despite low eyeblink CR percentages, indicating that fear responding was decreased independent of high levels of learned eyeblink responding The results of paired training were consistent with two-process models of conditioning that postulate that early emotional responding facilitates subsequent motor learning, but measures from random control animals demonstrate that partial CS-US contingencies produce decrements in fear despite low levels of eyeblink CRs. These findings suggest, a relationship between CS-US contingency and fear levels during eyeblink conditioning, and may serve to clarify further the role that fear conditioning plays in this simple paradigm.  相似文献   

11.
Abstract-Simple delay classical eyeblink conditioning, using a tone conditioned stimulus (CS) and airpuff unconditioned stimulus (US), was studied in cross-sectional samples of 4- and 5-month-old healthy, full-term infants. Infants received two identical training sessions, 1 week apart. At both ages, infants experiencing paired tones and air-puffs demonstrated successful conditioning over two sessions, relative to control subjects who had unpaired training. Conditioning was not evident, however, during the first session. Two additional groups of 5-month-olds received varied experiences during Session 1, either unpaired presentations of the CS and US or no stimulus exposure, fol-lowed by paired conditioning during Session 2. Results from these groups suggest that the higher level of conditioning observed following two sessions of paired conditioning was not the result of familiarity with the testing environment or the stimuli involved but, rather, the result of retention of associative learning not expressed during the first conditioning session.  相似文献   

12.
P. F. Lovibond and D. R. Shanks (2002) suggested that expectancy of the unconditional stimulus and emotional ratings are valid indexes of awareness in Pavlovian conditioning and that participants are aware if they can discriminate the conditional stimuli. However, research suggests that processes that are irrelevant to awareness affect these measures. Further, as awareness refers to conscious experience, a valid measures needs to index subjective state rather than discrimination ability. In support, research using subjective measures has demonstrated qualitatively different effects depending on whether participants reported being aware or unaware of the stimuli. In this research, participants reported being unaware of the stimuli even though they were clearly able to discriminate the stimuli. These findings question the validity of Lovibond and Shanks' concept of awareness and their suggestion of a close association between conditioning and awareness.  相似文献   

13.
A large body of evidence indicates that the cerebellum is essential for the acquisition, retention, and expression of the standard delay conditioned eyeblink response and that the basic memory trace appears to be established in the anterior interpositus nucleus (IP). Adaptive timing of the conditioned response (CR) is a prominent feature of classical conditioning—the CR peaks at the time of onset of the unconditioned stimulus (US) over a wide range of CS-US interstimulus intervals (ISI). A key issue is whether this timing is established by the cerebellar circuitry or prior to the cerebellum. In this study timing of conditioned eyeblink responses established via electrical stimulation of the interpositus nucleus as a conditioned stimulus (CS) was analyzed prior to and following modification of the CS-US interval in well-trained rabbits. Consistent with previous results, learning under these conditions is very rapid and robust. The CR peak eyeblink latencies are initially timed to the US onset and adjust accordingly to lengthening or shortening of the CS-US interval, just as with peripheral CSs. The acquisition of conditioned eyeblink responses by direct electrical stimulation of the IP as a CS thus retains temporal flexibility following shifts in the CS-US delay, as found in standard classical eyeblink conditioning procedures.  相似文献   

14.
A large body of evidence indicates that the cerebellum is essential for the acquisition, retention, and expression of the standard delay conditioned eyeblink response and that the basic memory trace appears to be established in the anterior interpositus nucleus (IP). Adaptive timing of the conditioned response (CR) is a prominent feature of classical conditioning-the CR peaks at the time of onset of the unconditioned stimulus (US) over a wide range of CS-US interstimulus intervals (ISI). A key issue is whether this timing is established by the cerebellar circuitry or prior to the cerebellum. In this study timing of conditioned eyeblink responses established via electrical stimulation of the interpositus nucleus as a conditioned stimulus (CS) was analyzed prior to and following modification of the CS-US interval in well-trained rabbits. Consistent with previous results, learning under these conditions is very rapid and robust. The CR peak eyeblink latencies are initially timed to the US onset and adjust accordingly to lengthening or shortening of the CS-US interval, just as with peripheral CSs. The acquisition of conditioned eyeblink responses by direct electrical stimulation of the IP as a CS thus retains temporal flexibility following shifts in the CS-US delay, as found in standard classical eyeblink conditioning procedures.  相似文献   

15.
We tested the proposal that trace and delay eyeblink conditioning are fundamentally different kinds of learning. Strings of one, two, three, or four trials with the conditioned stimulus (CS) alone and strings of one, two, three, or four trials with paired presentations of both the CS and the unconditioned stimulus (US) occurred in such a way that the probability of a US was independent of string length. Before each trial, participants predicted the likelihood of the US on the next trial. During both delay ( n =20) and trace ( n = 18) conditioning, participants exhibited high expectation of the US following strings of CS-alone trials and low expectation of the US following strings of CS-US trials a phenomenon known as the gambler's fallacy. During delay conditioning, conditioned responses (CRs) were not influenced by expectancy but by the associative strength of the CS and US. Thus, CR probability was high following a string of CS-US trials and low following a string of CS-alone trials. The results for trace conditioning were opposite. CR probability was high when expectancy of the US was high and low when expectancy of the US was low. The results show that trace and delay eyeblink conditioning are fundamentally different phenomena. We consider how the findings can be understood in terms of the declarative and nondeclarative memory systems that support eyeblink classical conditioning.  相似文献   

16.
In a previous study, we reported a dissociation between subjective expectancy and motor behaviour in a simple associative learning task (Perruchet, Cleeremans, & Destrebecqz, 2006). According to previous conditioning studies (Clark, Manns, & Squire, 2001), this dissociation is observed when the to-be-associated events coterminate and thus overlap in time (a training regimen called delay conditioning), but not when they are separated by a temporal delay (trace conditioning). In this latter situation indeed, there tends to be a direct relationship between subjective expectancy and behaviour. In this study, we further investigated this issue in a series of experiments where conscious and unconscious components of performance were pitted against each other. In Experiments 1–3, participants performed a simple reaction time task in which a preparatory signal (a tone) either overlapped with or terminated earlier than the imperative stimulus (a visual target presented in 50% of the trials). After each response, participants also had to state how much they expected the imperative stimulus to be displayed on the next trial. Results indicate that reaction times tend to decrease when the tone is consistently followed by the visual target across successive trials, whereas conscious expectancy for the target decreases at the same time. Importantly, we systematically found that the temporal relationship between the tone and the target failed to influence performance. In a fourth experiment, we examined whether these results extend to a two-choice reaction time task. To our surprise, we observed a direct relationship between subjective expectancies and reaction time in that situation. We nevertheless observed that the introduction of a delay between the tone and the target had, once again, no effect on performance.  相似文献   

17.
Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex, particularly the molecular layer, contains a high density of cannabinoid receptors (CB1R). The CB1Rs are located on the axon terminals of parallel fibers, stellate cells, and basket cells where they inhibit neurotransmitter release. The present study examined the effects of a CB1R agonist WIN55,212-2 and antagonist SR141716A on the acquisition of delay eyeblink conditioning in rats. Rats were given subcutaneous administration of 1, 2, or 3 mg/kg of WIN55,212-2 or 1, 3, or 5 mg/kg of SR141716A before each day of acquisition training (10 sessions). Dose-dependent impairments in acquisition were found for WIN55,212-2 and SR141716A, with no effects on spontaneous or nonassociative blinking. However, the magnitude of impairment was greater for WIN55,212-2 than SR141716A. Dose-dependent impairments in conditioned blink response (CR) amplitude and timing were found with WIN55,212-2 but not with SR141716A. The findings support the hypothesis that CB1Rs in the cerebellar cortex play an important role in plasticity mechanisms underlying eyeblink conditioning.  相似文献   

18.
It has been proposed that the medial prefrontal cortex (mPFC) is not necessary for delay eyeblink conditioning (DEC). Here, we investigated the involvement of the mPFC in DEC with a soft or loud tone as the conditioned stimulus (CS) by using electrolytic lesions or muscimol inactivation of guinea pig mPFC. Interestingly, when a soft tone was used as a CS, electrolytic lesions of the mPFC significantly retarded acquisition of the conditioned response (CR), and muscimol infusions into mPFC distinctly inhibited the acquisition and expression of CR, but had no significant effect on consolidation of well-learned CR. In contrast, both electrolytic lesions and muscimol inactivation of mPFC produced no significant deficits in the CR when a loud tone was used as the CS, or in the unconditioned response (UR) when a soft or loud tone was used as the CS. These results demonstrate that the mPFC is essential for the DEC with the soft tone CS but not for the DEC with the loud tone CS.  相似文献   

19.
Unit recordings and lesion studies have implicated the cerebellum as an essential site for the acquisition and maintenance of the conditioned eyeblink response. The current study looked at the neural characteristics of conditioned stimulus (CS) processing in the interpositus nucleus of the cerebellum after training New Zealand white rabbits (Oryctolagus cuniculus) in one of two conditioning paradigms: (a) compound conditioning (CMP), a compound CS consisting of light and tone paired with an air puff unconditioned stimulus (US); or (b) stimulus compounding (ALT), alternating blocks of tone CS and light CS trials paired with the air puff US. Single unit responses were recorded during five sessions after the animals had reached an asymptotic level of responding. Animals were tested for behavioral and neural responses to CS alone trials that included tone alone, light alone, and compound tone-light trials. For the CMP group, the compound CS elicited 80 to 90% conditioned eyeblink responses (CRs), whereas the individual tone and light CSs elicited only 40 to 50% CRs. For the ALT group, all three CSs (tone, light, and compound) elicited very high levels of responding of at least 80% CRs. For the CMP group, there were roughly equal numbers of cells responding to all of the CSs. This includes cells that responded exclusively to one, and only one, of the three stimuli and also those cells that responded to combinations of two or more. Cells from the ALT group were far more likely to respond exclusively to only one of the CSs. Both the behavioral and physiological results suggest that the compound tone-light stimulus was processed as a distinct stimulus, separate from the component tone and light. These results are discussed in the context of multisensory processing.  相似文献   

20.
Rabbits received lesions of the mediodorsal nucleus of the thalamus (MDN) or sham lesions and were subjected to classical eyeblink (EB) and heart rate (HR) conditioning. All animals received trace conditioning, with a.5-sec tone conditioned stimulus, a .5-sec trace period, and a 50-msec periorbital shock unconditioned stimulus. Animals with MDN lesions acquired the EB conditioned response (CR) more slowly than sham-lesioned animals. However, previous studies have shown that MDN damage does not affect delay conditioning using either .5-sec or 1-sec interstimulus intervals. The lesions had no significant effect on the HR CR. These results suggest that information processed by MDN and relayed to the prefrontal cortex is required for somatomotor response selection under nonoptimal learning conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号